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Preface

R e o e e T i T e T T I

The one area of broadcast electronics that seems to be
shrouded in mystery is the antenna-and-feeder system. The
reason is that most engineers who find their way into
broadcasting become involved with circuits and circuit theory
much more than with field theory. The engineer’s field theory,
like a muscle. becomes weak with disuse. The engineer could,
if he had the time, brush up on antenna and field theory so that
he could handle his antenna problems more efficiently. In the
past. however, this has not been an easy task.

Most of the texts on antennas have been either highly
mathematical. or else too superficial to be of any value.
Furthermore. the type of mathematics used in antenna work
tends to be unfamiliar to one who doesn’t use it on a regular
basis. This means that to brush up on antenna theory the
engineer would first have to brush up on vector mathematics,
and the time required is rarely available.

In working with broadcast engineers for over 30 years, I
have found that there are three factors that cause problems in
studying antennas:

1. Most antenna texts present a great deal more
information than is needed to enable one to operate
and maintain an antenna system. The process of



culling out the unessential is difficult. and there is a
tendency to give up.

2. The mathematical operations involved in calculating
impedances and field intensities are not particularly
difficult, but they are very tedious. This has been a
serious obstacle in the past, but with the advent of the
pocket electronic calculator. most of the tedious
operations are eliminated.

3. The engineer is apt to confuse the unfamiliar with the
difficult. This is probably the most serious obstacle. If
one has a preconception that a particular field of study
is difficult, he will manage to make it difficult. An
English author of a most readable book on calculus
once introduced the subject with the adage ‘“What one
fool can do. another can.” This adage applies equally
well to antennas. All that the average broadcast
engineer needs to know about antennas can be
mastered with a little persistence.

The book can be thought of as consisting of three parts.
Chapters 1 through 4 review the basic principles that underlie
all antenna and transmission-line operation. Concepts that
most frequently cause trouble are reviewed in more detail.
Chapters 5 through 16 deal with standard broadcast antennas.
The standard broadcast antenna is such that the engineer must
be concerned with all of the details of the system: therefore
the treatment is quite detailed. Chapters 17 through 19 deal
with FM and TV antenna systems. The approach here is
completely different, because the FM or TV antenna is
supplied as a manufactured component and most of the system
is located at the top of a tall tower, where the engineer can't
even gain access to it. In this case, he needs to know enough of
the basic principles to understand manufacturer's specifi-
cations and interpret the few measurements that he can make.
The remaining chapters are devoted to subjects that all
antennas have in common.

I would like to acknowledge the contribution that so many
of my associates have made to my understanding of antennas.
To the late Dan and Bill Hutton, John Battison, Palmer Greer,




Don Pauley. and Chris Payne: to George Bartlett, of the
National Association of Broadcasters who has done much to
spread the knowledge of antenna theory and practice by
supporting many seminars on the subject: and especially to
Carl E. Smith, who has shared unstintingly his unending
knowledge of the subject. Last, but far from least., is my
gratitude to Grace, whose encouragement and inspiration
made this work possible.

John E. Cunningham
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Chapter 1
Basic Principles

All of the subjects covered in this chapter are very
elementary. Every broadcast engineer has studied them at
least once. Nevertheless, a review that points out features that
are directly applicable to transmission lines and antennas is in
order. Every engineer or technician who has participated in
technical bull sessions knows that differences of opinion
involving the operation of a complicated piece of equipment
such as a television transmitter are quickly resolved.
Discussions about such very elementary concepts as charges,
fields. and magnetism, however, often show that our
understanding of very elementary principles is fuzzy, to say
the least. This fuzziness regarding elementary principles is
often the underlying reason why devices such as transmission
lines and antennas are often poorly understood.

It is easy to see why elementary principles are not well
understood. When we describe the operation of a complicated
transmitter system, we describe it in terms of simpler units
such as transistors, tubes, and resistors, knowing that our
audience understands these simpler building blocks. When we
get to something very basic. such as an electric charge, there
are no component parts on which to base our understanding.
We base our understanding on observations of experiments,
rather than physical reasoning. Knowledge of this type is
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disseminated in terms of what are really mathematical
fictions, such as fields and lines of force. If a civilization in
outer space mastered electromagnetic radiation and came to
earth. we would probably find that their basic concepts were
much different from ours.

These concepts or mathematical fictions are important in
that they are the only way we have of talking or writing about
the subjects. They can. however, cause a great deal of
confusion if the ground rules are not used properly. A case in
point involves the speed of propagation of electric charges in
conductors.

Every schoolboy knows that electricity travels at the
speed of light. which is 186,000 miles, or 300.000,000 meters, per
second. It is also common knowledge that the charge carrier in
conductors is the electron. It isn’t unusual, therefore, to find
people visualizing current in a conductor as consisting of a
stream of electrons traveling through the wire at the speed of
light. This idea vanishes when we apply the principles of
physics to the problem.

Physicists say that a current of one ampere corresponds to
a flow of 6.4 x 10® electrons per second. This is a goodly
number of electrons, so at first glance this figure seems to
support the earlier idea. However, though we know how many
electrons pass a point in a second, we need to know how many
are passing together before we can determine the speed of
individual electrons. We see this when we note that cars
traveling four abreast will only have to travel at a quarter of
the speed of cars in single file to have the same number of cars
pass a point in a given time.

It requires an unimaginable number of electrons passing a
point to produce an ampere of current, but there is also an
unimaginable number of electrons available in a conductor. If
we accept the physicists' figure of about 10* free electrons
per cubic centimeter of copper, we can calculate that the
speed of electrons in a No. 12 wire carrying one ampere is
about 0.08 in. per second—a far cry from the speed of light.

The above figure is based on steady, direct current. In
antennas and transmission lines, we are interested in
alternating currents with frequencies of one-half to several
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hundred megahertz. At 1 MHz the signal changes direction
every half microsecond. At the slow rate at which electrons
move, they barely move at all before they change direction.

If the electrons in a conductor actually move so slowly,
what is all of this about electricity moving at the speed of
light? The fact is, a current-carrying wire is analogous to a
hollow pipe filled with marbles. The instant a marble is pushed
into one end of the pipe, however long the pipe, a different
marble pops out of the other end. The pushing effect travels
through the pipe at a fantastic speed even though the speed of
the individual marbles is quite slow. In an electric circuit,
when a charge is introduced into one end, the effect is felt at
the other end almost instantaneously, as if the charge itself
traveled at the speed of light.

Thus, although electron flow is a valid and useful concept
in vacuum tubes, it hardly makes any difference in antennas
whether we think of electrons, or simply of charges, without
defining the charge carrier.

CURRENT CONVENTIONS

One of the more controversial subjects in electronics is the
question of what convention should be adopted for the direction
of current flow. For many years it was almost universally
agreed that a current flowed from the positive pole of a
battery. through the external circuit, back to the negative
pole. The convention was used long after it was well known
that the electrons which actually carry the charge flow in the
opposite direction. With the advent of the vacuum tube, it
became advantageous to consider the flow of electrons from
the cathode to the plate as being the plate current, and in many
texts, particularly those below the engineering level, the
negative-to-positive convention was adopted. This made the
explanation of vacuum-tube operation easy, but it means that
the direction of the drop of potential in a circuit is considered
the opposite of the direction of current flow. This is almost like
considering water as flowing against the direction in which
pressure is exerted.

There will always be some inconsistency in application,
regardless of what convention is adopted. In most of this book,
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dealing as it does with high frequencies, we will have little
occasion to concern ourselves with current direction, but in
some of the explanations, we will have to consider the flow of
charges. Since it is more convenient to consider a positive
cause as producing a positive effect, we will consider current
to consist of positive charges flowing from the point of higher
or more positive potential. This will undoubtedly offend some
readers at first, but the concept is easy to apply when one
becomes accustomed to it.

CHARGES AND FIELDS

An earlier section said that current is a flow of electric
charges. without defining what a charge is. This is where we
get to a concept so fundamental that we have no other, more
elementary. concepts that we can invoke to explain it. We
know that like charges tend to repel each other, and unlike
charges attract. Charge is the concept that we have invented
to explain this repulsion or attraction. In Fig. 1-1 we have a
metal ball suspended above the earth. When we close the
switch in the circuit, current flows, charging the ball. Or we
could say that the battery forced some of the electrons off the
ball through the battery onto the earth. We also know that if we
connect a conductor between the ball and earth, current .will
flow through the conductor until the ball is at the same
potential as the earth. When the ball is charged by the battery,
there is a potential difference of 100V between the ball and
earth. After a conductor has been connected between the ball

+ CHARGES

FIELD

Fig. 1-1. Charging a metal ball.
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and the earth for a short time, there is no voltage between
them.

When the ball is charged. the electrons on the earth
~know"" that the ball is positively charged. and they are
attracted to it. This attraction would take place even if there
were absolutely nothing between the ball and earth. This
action at a distance is repugnant to the average mind, so we
say that there are lines of force between the positive charges
on the ball and the negative charges on the earth. The lines of
force are said to form an electric field.

Ether

The whole question of fields and lines of force can be very
confusing. Back in 1865, long before the first radio signal was
transmitted. James Clerk Maxwell, a Scottish physicist,
theorized that light was actually an electromagnetic wave. His
work implied that other electromagnetic waves might exist.
About 20 vears later a German physicist, Heinrich Hertz,
actually demonstrated radio waves. To these early
investigators, if light and electric and magnetic energy were
propagated by a wavelike phenomenon, they must be waves in
something. They didn't know just what this something might
be. but they called it the ether.

Inasmuch as electric and magnetic fields were known to
travel through a vacuum, they assumed that the ether
permeated all space and matter. This concept was very useful
for practical applications. Instead of speaking of the
permeability or permittivity of free space. physicists could
speak of the permeability and permittivity of the ether. It is
much easier to attribute properties to something. even though
we don't know just what the something is. than to attribute
properties to free space, which, by definition, is nothing.

The concept of an ether was used by all of the early
workers in radio. but scientists were troubled by the fact that
no one had actually demonstrated the existence of the ether.
They reasoned that if the ether did exist. either the earth
moved through it, or it moved through the earth. Astronomical
observations indi¢ated that the earth must move through the
ether. This meant that the velocity of light measured at the
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surface of the earth should be faster in one direction than in
the opposite direction.

If a way could be found to measure the velocity of light in
several directions on the surface of the earth, it should be
possible to demonstrate the existence of the ether. In a
now-famous series of experiments conducted between 1880 and
1890. two physicists—Michelson and Morley—measured the
velocity of light to a high degree of accuracy. Much to their
surprise they found that the velocity of light is the same in all
directions along the surface of the earth.

The scientific community was faced with a dilemma:
Some observations indicated that the earth moved through the
ether. while others indicated that the ether moved with the
earth—obviously a contradiction. After several futile attempts
to explain the contradiction, the whole idea of an ether was
dropped.

This was indeed unfortunate for the practical-minded
engineer, who must now state that radio waves are propagated
through empty space by an electromagnetic field—which is
just another way of saying that we haven't the slightest idea of
how radio waves are propagated.

This situation may be corrected in the next few years. An
increasing amount of evidence is accumulating that the early
investigators might have been right, and that there really is
some sort of medium that carries radio waves, electric fields,
and magnetic fields. In Europe two Nobel Prize winners, Dirac
and De Broglie, have proposed that some sort of ether does
exist. In this country Professor H. C. Dudley, of the University
of Illinois, has written several papers that shed new light on
the subject. Dudley points out that recent discoveries indicate
that the whole universe is filled with a veritable sea of
extremely small particles called neutrinos. He proposes that
this neutrino is actually the medium that carries radio waves.

If Dudley’s work proves to be correct—and there is an
increasing amount of evidence that it is—the engineer will
have a much clearer idea of what is actually going on in
circuits and antennas. In the meantime, the reader should
adopt whatever concept is most comfortable to him, with the
consolation that, at present, the scientists don't actually know
much more about it than he does.
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Charge and Capacitance

Getting back to Fig. 1-1, if we were to repeat the
experiment with a larger ball, or with the ball closer to the
earth, we would find that more current would be required to
charge the ball to 100V. This shows that voltage is not a good
measure of how much charge we have. Actually the current in
amperes that flows into the ball to charge it is the rate of flow
of charge. The unit of measurement of charge is the coulomb.
A current of one ampere means that charge is flowing at the
rate of one coulomb per second.

If different arrangements similar to that of Fig. 1-1 will
take on a different amount of charge for the same value of
applied voltage, we need some measurement that will tell us
how much charge each arrangement will take with a given
value of applied voltage. We do have such a unit in the farad.
The ability of a physical arrangement to acquire a charge
when a voltage is applied to it is called its capacitance, the
basic unit of which is the farad. The amount of charge in a
capacitor is given by the equation

q=CV

where g is the charge in coulombs, C is the capacitance in
farads. and V is the voltage across the capacitor in volts.

The farad, like so many basic units, is not of a very
convenient size. In radio work we more commonly use
microfarads or picofarads.

So far we have assumed that there was only air, which is
electrically about the same as free space, between the ball of
our experiment and the earth. If we were to fill this space with
a material such as polystyrene, we would find that the ball
took on more charge for the same value of applied voltage. As
a matter of fact, it would take on just about twice as many
coulombs of charge. We account for this by saying that the
relative value of the permittivity, or the dielectric constant, of
polystyrene is twice that of free space. The actual numerical
value of dielectric constant depends on the unit system we are
using. We will come back to this later.
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Magnetic Field

By using analogies, we can also arrive at the concept of a
magnetic field. If we were to pass a current through a coil of
wire, we would find that it attracts pieces of magnetic
material. We account for this attraction by saying that lines of
magnetic force surround each current-carrying conductor.

We have no need in this book for the units used to describe
magnetic quantities, but perhaps the analogy with electric
fields will be a little clearer if we state them briefly. We
measure the ability of a current to produce magnetic effects in
terms of the magnetizing force H.

In a straight conductor the magnetizing force is expressed
in amperes per meter and is numerically equal to the current
in the conductor divided by its length. If we coil up the wire so
that the magnetic effects of the turns reinforce each other, we
usually state the magnetizing force in ampere-turns per
meter. As with the electric field. the strength of the magnetic
field can be measured in terms of the density of the lines of
force. The unit of measurement of flux density B is the weber
per square meter.

Everyone knows that a magnetic field is stronger in
ferromagnetic materials than in free space. To explain this,
we have the simple equation

u = B/H

where u is the permeability of the material through which the
magnetic field passes. Here again. the numerical value
depends on the unit system that we are using.

UNIT SYSTEMS

There are several different systems of units used to
specify different physical quantities. Each of these has its
advantages and disadvantages. For example, there are two
cgs (centimeter—gram-—second) unit systems. In the cgs
electrostatic-unit system, the permittivity of free space is
simply 1. This makes calculation of capacitance easy, but to
keep the system consistent, the unit of voltage becomes the
statvolt and the unit of current becomes the statampere. These
are both oddball units that will not ring a bell with the average
broadcast engineer.
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In the cgs electromagnetic-unit system, the permeability
of free space is 1. This simplifies the calculation of magnetic
field and inductances but leads to the abvolt and abampere as
units of voltage and current which are as unfamiliar to the
average broadcaster as the electrostatic units.

The unit system that is most widely accepted today is the
so-called rationalized mks (meter—kilogram—second) unit
system. In this system all of the commonly used quantities are
expressed in familiar units such as volts, amperes. and ohms.
The price that we pay for this very convenient system of units
is that the permittivity ¢ and permeability p, of free space
take on cumbersome values:

€, = 8.85 x 10 * farad per meter
i, = 1.26 X 10 "% henry per meter

These two properties of empty space enter into the equation
for the velocity of propagation of radio waves, as we shall see
later on.

ENERGY AND POWER

Although power is given consideration in all parts of a
broadcast station, energy is the more fundamental concept.
Energy is defined as the capacity to do work. We are not
interested in a strict definition of work. As far as we are
concerned, it is sufficient to say that work is the capacity to
move something against an opposing force. The object of any
broadcasting system is to move electric charges in a receiving
antenna somewhere. To do this requires energy. The energy
must be carried from the transmitter. through the feeder
svstem to the antenna, and there it must be radiated through
space in the desired directions.

The basic unit of energy is the joule. Many engineers have
forgotten this because they find it more convenient to work
with power. which is the rate of change of energy. A power of
one watt means a rate of change of energy of one joule per
second. Although power is usually more convenient for
practical calculations, it is much easier to understand things
like reactance and reflections on transmission lines if we think
interms of energy.
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Average Power

Figure 1-2 shows a source, such as an AC generator or
oscillator, connected to a load. The resistance of the load is 10
ohms, which is assumed to be purely resistive, with no
reactive component. We have a voltage of 20V across the load,
and according to Ohm'’s law, the current will be 2A. Therefore
we know that the power in the load is 20V x 2A = 40W. This
means that energy is flowing into the resistive load at a rate of
10 joules per second. Without saying it, we realize that this is
the average power, which is the power that we usually talk
about. Common sense tells us that energy isn't actually
flowing into the resistor at a constant rate. It must be zero at
the instants in the cycle when both voltage and current are
zero, and it must be maximum when both voltage and current
are maximum.

102 20v Fig. 1-2. A generator with a re-
sistive load.

Instantaneous Power

It is helpful in understanding just how energy flows in a
circuit to consider the instantaneous power, that is, the power
at any instant of time. The instantaneous power in any circuit
is equal to the product of voltage and current at some instant.
Figure 1-3 shows a plot of the voltage and current and their
product for the circuit of Fig. 1-2. During half of each cycle
both voltage and current are positive, and during the other half
they are both negative. Since the product of two negative
numbers is positive, the power is positive at all times and
varies at twice the frequency of the applied voltage. Thus the
energy enters the resistor in pulses. In purely resistive circuits
this pulsating nature of power and energy rarely concerns us,
so we speak of the average power, which is the average value
of the power wave in Fig. 1-3.

Energy in an Electrical Circuit

There are some other rather useful principles illustrated
in the circuit of Fig. 1-2. Since the circuit is resistive, the
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Fig. 1-3. Instantaneous and average power.

voltage and current are in phase at all times. This resistive
nature of the load—or what is the same thing, the fact that the
voltage and current are in phase—tells us that the energy is
flowing in one direction and is not coming back. If the load is a
resistor, the energy is converted into heat. If the resistive load
represents the resistive component of some sort of motor, the
electrical energy may be converted into mechanical energy.
And if the resistance is seen at the terminals of an antenna, the
energy is radiated. Although the theory of relativity shows that
there is an interchange between matter and energy in some
instances. as far as we are concerned the old law of
conservation of energy still holds: Energy can neither be
created nor destroyed: it is merely converted from one form to
another.

In Fig. 1-4 we assume that a source is connected to a load
that is purely capacitive and has no losses. In this case, the
voltage and current are no longer in phase. The current leads
the voltage by 90°. This is logical since, at the instant that the
source is connected, there is no charge in the capacitor. Our
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earlier equation for the voltage across a capacitor can be
written

V=gq/C

This equation says there can be no voltage across a capacitor
unless there is a charge in it. So in our circuit, as the current
flows into the capacitor, charging it, a voltage builds up across
it.

Fig. 1-4. A generator with a

C
T capacitive load.

We know that capacitors do not dissipate energy unless
they have losses. so the average power in our circuit must be
zero. But we also know that charge flows into and out of the
capacitor and that this must represent some energy. The
situation becomes clear when we consider the instantaneous
power as we did in the resistive circuit. Figure 1-5 shows the
voltage and current, and their product. the instantaneous
power. The instantaneous power has twice the frequency of the
applied voltage. but in this case it isn’t positive all of the time.
There are portions of the cycle where the voltage and current
have opposite signs and their product is thus negative.
Negative power is the rate at which energy flows toward the
source (generator). The curve shows that energy enters the
capacitor for a quarter of a cycle, then returns to the source
during the next quarter-cycle.

The important point in this example is that when voltage
and current are 90° out of phase, the net transfer of energy
from the source is zero. Energy does in fact leave the source,
and it is for a time stored in the electric field in the capacitor:
but it is later returned to the source. This brings up the
question of whether or not we can relate the amount of energy
stored in the capacitor to the voltage that exists across it. We
can do so by the equation

W =1/2CV*
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where W is the energy in joules, C is the capacitance in farads,
and V is the voltage across the capacitor.

We know that if the load in our simple circuit were a pure
inductance with no losses, the voltage would lead the current
by 90°. It isn't difficult to construct an analogy to the case
where the load is capacitive. We can see that energy must flow
in and out of the inductor. but no average energy is taken from
the source. As with the capacitor, we have an equation for the
amount of energy stored in the magnetic field of an
inductance. It is

W = 1/2LI*

where W is the energy in joules, L is the inductance in henries,
and ! is the current in amperes.

In both the capacitance and inductance, the actual energy
is stored in the associated electric or magnetic field. In fact,
electric and magnetic fieldsare the only media that we know
of in which we can store energy in its electrical form (When
energy is stored in a battery, it is actually stored in the form of
chemical energy.)
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This leads us to a rather amazing, but logical, concept.
Consider the circuit of Fig. 1-6, which consists simply of a
source connected to a load some distance away. We know that
the energy must get from the source to the load before it can
do anything. We always assume, without wondering why, that
the energy simply travels along the wires to the load, where it
does whatever work the system was designed to do. We never
stop to think that an ideal wire—one that has no inductance or
capacitance —does not meet any of the requirements we have
considered above for storing energy. But when we realize that
each wire has inductance, with its incidental magnetic field,
and that there is capacitance and an electric field between the
wires, we have all the requirements for storing energy. Since
we also know that in a capacitor or inductor the energy is
actually stored in the associated field, this brings us to the
rather startling conclusion that electrical energy is actually
carried in the fields associated with wires, and not in the wires
themselves! The wires merely serve to guide the energy to
where we want it to go. This concept is hard to accept at first.
Once accepted, it certainly makes radiation, whereby energy
is propagated through space without the benefit of any wires at
all, a lot easier to understand.

SOURCE LOAD

Fig. 1-6. Source with load at a distance.

SUPERPOSITION PRINCIPLE

One of the most useful concepts in all branches of physics,
including antenna theory, is the superposition principle. The
principle is very general and can be applied to any system,
electrical or mechanical, wherein the elements of the system
are linear. A linear element is one in which the response is
directly proportional to the cause. Linear elements include
resistances, inductances, and capacitances, but do not include

such things as diodes. For our purposes the superposition
principle can be stated:
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In any system containing only sources of energy and linear
bilateral elements—such as resistances. inductances.
capacitances. transmission lines. and antennas—the total
response with all sources active can be found by algebraically
adding the responses that would be produced by each source act-
ing separately.

This is quite a mouthful. All it means is that, in a system
containing several sources, we can find out what is happening
in any part of the system by finding out what would happen if
each source acted alone, then algebraically combining the
results.

Superposition can be applied to any physical situation in
which the responses are linear. For example, by reflecting on
the principle, we can state with confidence that a bullet fired
horizontally from a gun will strike the earth at the same time
that a similar bullet would strike the earth if it was merely
dropped from the same height.

One place where superposition is very useful is in finding
the field produced at some point by several antennas in a
directional system. We simply find the field that would be
produced by each antenna acting alone, then algebraically
combine the fields to find the total resulting field.

Figure 1-7 shows the application of superposition in finding
the current in a series circuit. Of course, this particular
problem could be solved by a much simpler method, but this
exercise shows some of the subtleties involved in applying
superposition. To apply the principle, we first make one of the
batteries idle (shorted) and find the current that would be
produced by the other battery: then we reverse the process.
Thus in Fig. 1-7B we replace battery B2 with a short circuit
and find the current to be 3A, flowing counterclockwise around
the circuit. In Fig. 1-7C we replace battery Bl with a short
circuit and find the current to be 24, flowing clockwise around
the circuit. Since the two component currents are flowing in
opposite directions, the net current actually flowing in the
circuit is their difference: 1A, flowing counterclockwise
around the circuit.

There are several points about Fig. 1-7 that should be
clearly understood. First of all, the component currents do not
actually flow in the circuit of Fig. 1-7A. They are the currents
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that would flow if each of the sources were acting alone, but
the sources are not acting alone. The only current that actually
flows in the circuit is the 1A flowing counterclockwise around
the circuit. Battery B2 doesn’'t contribute anything to the
actual current. In fact. the current is flowing ‘‘backward’
through this battery in such a direction as to charge it. The
point is that even though the component currents do not have a
true physical existence. they are useful in finding the actual
current. There are physical situations where applying the
superposition principle provides not only a convenient way to
get a numerical answer to a problem but also a better
understanding of the physical principles involved.

We noted at the outset that superposition applies only
when the response is linear. It is well to remember that power
is not a linear function of either the voltage or the current in a
circuit, and powers in a circuit or system cannot be found by
simply adding the powers that each source would provide if
acting alone.

Figure 1-8 shows another simple series circuit. The
current I’ due to battery Bl acting alone is 1A, and the current
I' ' due to battery B2 acting alone is 2A. The actual current in
the circuit is 3A. Now, suppose that we tried to find the power
in the 9-ohm load resistor by adding the power that would be
supplied by each source acting alone. The power delivered to
the load by each battery acting alone would be

P =(I'YR=(19=9W
P =(I'""¥ R =(2/9 = 36W

26




giving a total of 45W. Actually we know that the current in the
9-ohm resistor is 3A, and the power is

PI* R=(3)?9=81W

Thus if we attempted to use superposition to add powers, the
result would be in error. The reason for this is that
(I'¥ + (I'")* is definitely notequal to (I' + I'')’.

.\,g\' )

- I*— 27V

-l lI= — =3A
90

BE T— P=12R=(9)9)=81W

I=3A —»

Fig. 1-8. Power in a simple series circuit.

WAVES, WAVELENGTH, AND DEGREES

When the term wave is used, one often thinks of waves in
water. This is unfortunate because the waves we talk about in
connection with radio are of a different nature. We use the
word wave in two different senses. Radio waves are actually
propagated by a wavelike action, but generally. when we use
the word wave, we are speaking about a graphical
representation of a physical phenomenon, not the action itself.

Sine Wave

The waveshape that concerns us most in antenna work is
the sine wave. This wave is familiar to every broadcast
engineer, but unless we keep our terminology clear, we get
into some problems that will be very difficult to resolve.
Figure 1-9 shows one cycle of the familiar sine wave. In this
case, we will assume that it is the plot of voltage as a function
of time. We find that the voltage smoothly increases to a
positive peak, gently levels off, and smoothly decreases. It
then does the same thing in a negative direction. The
horizontal axis of our graph represents time. If the frequency
of our wave was 1 MHz, the duration of one complete cycle, or
period of the wave, would be 1 usec.

This wave is also a plot of a trigonometric function that,
happily, behaves in the same way as most of the voltages and
currents that concern us. This means we can use
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trigonometric expressions to learn many things about our
wave of voltage that would otherwise be hard to determine.
The trigonometric function involved is the sine of an angle. If
we vary the angle through 360°, the sine of the angle will vary
just as the wave does in our illustration. This is shown by the
set of numbers on the vertical axis of the graph. This is very
convenient because it enables us to measure time periods in
degrees. When doing this we should probably use the term
electrical degrees to distinguish from degrees of arc, but
common usage neglects this, and no trouble will be
encountered if we keep the electrical concept clearly in mind.

To measure time in degrees is actually to measure time in
fractions of the period of a wave. For example, if we were to
state that another 1 MHz sine wave lags that of Fig. 1-9 by 90°,
we would be saying that the new wave occurs 90° later in time.
Since 90° is one-quarter of 360°, we could say that any point on
the second wave occurs a quarter of a period, or 0.25 usec,
later than the corresponding point on the reference wave.

+1 +V
- f=1MHz
w
- 2
02 +~
» 3 TIME—»
s |
|
—Vp2 :
I
|
-1 —vV !
~ PERIOD=1pusec |

Fig. 1-9. Sine-wave plot, amplitude versus time.

The angle is usually called a phase angle. Note
particularly that a phase angle (or phase shift) expressed in
degrees can only be converted to time if we know the
frequency (and hence the period) of the wave. Electrical
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degrees are not absolute, but relative, units of time. If the
frequency in our example was 100 kHz instead of 1 MHz, %0°
would correspond to a time period of 2.5 usec rather than 0.25
usec.

Wavelength

In broadcast work we are also interested in waves in space
as well as waves in time. Suppose that the signal of Fig. 1-9 is
radiated through space. Further suppose that we have a series
of instruments spaced along the path that measure the signal
strength at each point. Since the signal varies with time, it
cannot have the same magnitude at all points in space at the
same time. If at one instant we could stop time long enough to
read all of the instruments and plot their indications as a
function of distance along the path of propagation, the plot
would be as shown in Fig. 1-10. The wave plotted here is
identical in shape to the wave of Fig. 1-9, but it has a different
meaning that should be clearly understood. Whereas in Fig. 1-9
we have amplitude versus time at some point in space, in Fig.
1-10 we have amplitude versus distance in space at a fixed
instant of time.

(0] [C4) [[) e
I

AMPLITUDE

-

DISTANCE
Fig. 1-10. Sine-wave plot, amplitude versus distance.

Since the wave of Fig. 1-10 is sinusoidal, we can express it
in degrees, just as we did in Fig. 1-9. Here, however, a degree
is an increment along the axis of the graph that represents
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distance, not time. Before we can correlate the degree with
actual physical distance in space, we must take into
consideration how fast the wave is moving through space. We
can then tell how much distance is represented by one
wavelength or a fraction of a wavelength, which may be
expressed in degrees. The formula that we use to do this is

c

A= —

f

where A is the wavelength in meters, f is the frequency in
hertz, and c is the velocity of propagation. In free space c is
300.000.000 meters per second. Thus our formula becomes

300,000,000 300
= — or = —_—
finHz fin MHz

This formula shows that when we specify a distance in
degrees, we are actually specifying the time it would take one
wavelength of our signal to cover this distance. This is
comparable to measuring the distance between two cities in
hours when we know the speed at which we will travel between
them.

There are two important facts to note about expressing
distance in fractions of a wavelength or in degrees. First, the
correlation with actual distance is only valid if we know the
frequency. Second, the velocity of propagation enters into the
relationship. As long as we are talking about propagation in
free space, we can use the formulas given above; but when we
get into a transmission line, where the velocity of propagation
may be lower, we must make the necessary correction before
we can correlate distance in degrees with actual physical

distance.
In summary, the wave nature of radio signals makes it

possible for us to measure either time or distance in degrees.
In each case, frequency is the fundamental concept; we must
know the frequency before we can do anything. The frequency
is determined by whatever is generating the signal, usually a
transmitter. When expressing distances in wavelengths or
fractions of a wavelength, we must be sure of the velocity of
propagation. In dealing with antennas, we encounter signals
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that can be represented by waves both as functions of time and
functions of distance. Unless the distinction is kept clear in our
minds. confusion will result.

The situation is further complicated by the fact that we
must also consider radiation at various angles in space, which
are also expressed in degrees. If the nature of each quantity
expressed in degrees is kept clear, the situation isn’t bad. It is
only when we have a rather hazy idea of what we mean by
degrees that confusion results.

PHASE LAG AND LEAD

The radiation properties of antenna arrays depend on the
phase of the signals that are applied to various elements. When
dealing with feeder systems. we must keep track of all of the
phase shifts that are encountered, whether they are introduced
by networks or by the time delay required for a signal to pass
through a transmission line. To control these phase shifts, we
use networks to introduce a desired amount of phase shift.
These networks may either retard the phase of a signal and
cause it to lag the input signal, or they may advance the phase
and cause it to lead the input signal.

Phase Lag

The concept of a network that causes the output to lag the
input is easy to accept. All we have to do is find something that
will introduce a time delay. This will correspond to a phase
lag. and knowing the frequency, we can find the number of
degrees corresponding to any given time delay.

Phase Lead

The concept of a phase lead, or advance, isn't as easy to
accept. It may seem that a network that causes the output to
lead the input must move something forward in time. Putting
it another way, it looks as though the network must have some
way of “*knowing” what the signal is going to be like in the
future if the network's output is to look exactly as the input
wave will at some time in the future. Of course, this isn’t
possible, and there is a better explanation of what happens.

Inasmuch as we are dealing with signals that do not vary
much from one cycle to the next, even with modulation, we
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consider what is usually called the steady-state response that
we get at the instant we apply power to the system. The
situation is analogous to a platoon of troops following the
orders of a drill sergeant. If the troops are at ease and not in
formation and the drill sergeant suddenly barks out an
unexpected command, the immediate response is nearly chaos
while everyone gets in the proper position. Very soon
afterward, however, the platoon is a smooth-functioning group
that efficiently carries out all subsequent orders. The situation
in an electric circuit is much the same. If the network is ““at
rest.” with no charge in the capacitors and no current in the
inductors. and a signal is suddenly applied, there follows a
period during which the voltages and currents adjust
themselves to the new environment. This is called the
transient period. Very soon after this—the exact time depends
on the Q-factor of the network—the network settles down and
follows the dictates of the applied signal. It is this steady-state
situation that concerns us.

Figure 1-11A shows an AC source connected through a
switch and resistor to a capacitor. We will consider the voltage
from the source to be the cause and the current in the circuit to
be the effect. We know from elementary circuit theory that in
a circuit containing both resistance and capacitance, the
current leads the applied voltage—that is, the current reaches
its maximum value before the voltage does. This looks like a
clear case of the effect happening before the cause.

We can resolve this apparent difficulty by looking at the
voltage and current in the circuit during the transient period.
Let us assume that the switch in the circuit is closed at the
instant when the applied voltage is at its maximum value. The
voltage across the source, resistor, and capacitor, as well as
the current in the circuit, are shown in Fig. 1-11B. At the
instant the switch is closed, there is no charge in the capacitor,
so it looks like a short circuit. The current will be maximum,
but all of the voltage will appear across the series resistor. At
this instant the current is in phase with the applied voltage:
that is. the effect is occurring at the same time as the cause.
From this time on, the voltage across the capacitor increases
and the source voltage decreases.
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Fig. 1-11. Transient conditions in a circuit.

It is easy to see that the current in the circuit will stop
flowing when the source voltage and the voltage across the
capacitor are equal. After this the capacitor voltage will be
higher than the source voltage, so the current will start to flow
in the opposite direction. Thus the current, which is really the
effect, reverses direction before the voltage, which is the
cause. The phase angle between voltage and current is
determined by the values of resistance and capacitance in the
circuit. In this case, the phase angle is 45°. Since the applied
signal is sinusoidal. once the circuit reaches the steady state
the current will always lead the voltage by 45°.

VECTORS

A vector quantity is one that has both magnitude and
direction. Quantities such as force and velocity, which have
both magnitude and direction, are vector quantities. We can
specify them in several different ways. For example, if the
wind is blowing at 5 miles per hour from a direction which is
30° from north, we can specify the magnitude and velocity of
the wind by a vector, which we write as 5/30°. The 5 indicates
that the magnitude is 5 mph, and the 30° gives the direction. We
can represent this vector graphically by drawing a line 5 units
long at an angle of 30° from some reference line, which is
usually, but not necessarily, the horizontal axis. The line itself
is usually called a vector, and it is understood that the line is a
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graphical way of representing both the magnitude and
direction of some quantity. The 5/30° vector is shown in Fig.

1-12.
/ Fig. 1-12. Vectors and phasors. In

vector notation a is an angle in
space. In phasor notation a is a
phase angle.

a=30°

REFERENCE LINE

Vectors were originally used to specify physical quantities
that had some direction in space. It was found, however, that a
vector could be used to represent sinusoidal electrical
quantities. When used in this application, the lines are more
properly called phasors.

Use of Phasors and Vectors

There is a difference between a vector and a phasor:
Vectors can easily be expanded to three dimensions, whereas
phasors are restricted to two dimensions. Unfortunately. in an
AM broadcast station the term phasor refers to a piece of
equipment. This item was called a phasor long before the
mathematical use of the word was coined. As a result, when
the broadcast engineer hears the word phasor. he immediately
identifies it with a piece of equipment. He has traditionally
used the word vector to describe what the mathematicians call
phasors, and this tradition will be respected throughout this
book.

A vector can be used to represent a sinusoidal voltage or
current, or an impedance (which is the ratio between them).
For example, suppose that we wish to represent a current of
5A as leading the applied voltage, which we take for a
reference, by 30°. Our vector diagram for this current is
exactly the same as the vector diagram of Fig. 1-12. The only
difference is that in the previous case the angle represented an
angle in space whereas in the present case it represents a
phase angle. We express the current in the same way as we
expressed wind velocity: 5/30°.
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COMPLEX NUMBERS

A vector is just another way of writing a complex number
(a number that can be resolved into two components at right
angles to each other). To keep things on familiar ground,
suppose that we have a circuit consisting of a 4-ohm resistance
in series with a 3-ohm inductive reactance, as shown in Fig.
1-13A. We could write the impedance of the circuit as

Z = 4 + j3ohms

Thus written, the impedance is said to be in rectangular form.

The use of the boldface symbol (Z) for impedance denotes
that the vector is completely described, and not merely its
absolute value given. To indicate the absolute value of a
parameter, we use bars with the letter symbol, as in |Z]. In
general, the use of boldface type and bars will not be
necessary in this book, because the context of the problem or
discussion will make clear which aspect of a quantity is of
interest. In future chapters, this special symbology will be
used only when required to prevent confusion.

We know from elementary AC theory that the magnitude
of this impedance is

IZ| = VR + X* = V16 + 9= 50hms

The phase angle between the applied voltage and the current is
36.87°. Now we can write the impedance in the form
Z=5,3687

The above impedance can also be represented by the vector
diagram of Fig. 1-13B. When written in this notation, the
impedance is said to be written in polar form. As we will see,
some mathematical operations are easier when complex
numbers are written in polar form, and others are easier when
the numbers are written in rectangular form. We convert from
one form to the other by means of a right triangle and the two
simple trigonometric expressions shown in Fig. 1-13C.

Adding and Subtracting Vector Quantities

Addition and subtraction of vector quantities is much
easier when they are expressed in rectangular form. The
procedure is as follows:
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Fig. 1-13. Using vectors to represent electrical quantities.
Convert both numbers to rectangular form, using the
method shown in Fig. 1-13C.

Add the real and “‘imaginary” parts separately.

. Convert back to polar form if this form is required.

Figure 1-14 shows an example. Here we add 5 , 36.87°

//
/ j4
’
/
] _ (43 +
. i4 A i3
i3 G "
1
4 "3 —
4 + 3

A

4+ i3
J 3+ j4
o ' 7 + j7=9.90/45°
) 1j7
|
1
45° |

7
)

Fig. 1-14. Adding vectors.



and 5, 53.13°. We use these odd angles to make the
real and imaginary (j) numbers come out to whole
numbers. The sum, when converted back to polar
form, is 9.9 . 45°. In Fig. 1-15 we have an example of
subtraction. which is simply the reverse of the
addition of Fig. 1-14.

i7
- 4 _ i3
"3 ' 4

(A)

747
-3 +j4
4 + j3=5/36.87°

8)

Fig. 1-15. Vector subtraction.

Multiplying and Dividing Vector Quantities

Two vectors can be multiplied together easily when they
are expressed in polar form. All we have to do to find the
product is to multiply the magnitudes and add the angles. For
example. suppose that we wish to find the vector voltage
across an impedance of 10 £ 15% when the current through the
impedance is 5 , 30° (i.e., 5 . 30° amperes). From Ohm’s law
we know that we have to multiply current by impedance to find
voltage. That is

V=1IZ
=5,30° X 10 £ 15°
= (5 x 10) . 30° + 15° = 50 L 45°V
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Division of vectors is just as easy. To reverse the problem
just stated, suppose that we are given a voltage of 50 , 45°V
and a current of 5 ; 30°A and asked to find the impedance.

50 , 45° 50
Z=V/I= = — /45 - 30 =10 . 15°ohms
2,30° ]

Although vectors may be multiplied and divided in
impedance problems, vector multiplication can not be used to
find power.

In summary, we can express any complex number in
either rectangular or polar form. In antenna work the polar
form is useful for combining the field intensities from various
antenna elements. In this book we will use whichever form
tends to make clearer the technical points in question.

One does not actually have to go through the drudgery of
performing the operations that we have presented. With an
electronic calculator it is merely a matter of pressing keys.
One should, however, have an understanding of the meaning of
the quantities.

ANOTHER LOOK AT IMPEDANCE

The concept of impedance follows directly from Ohm’s law
for alternating currents and is familiar to every broadcast
engineer. Nevertheless, when the concept is applied to such
things as antennas and transmission lines, a great deal of
confusion often results. For this reason we will briefly review
the concept, with emphasis on some of its more subtle
implications in antennas and transmission lines.

Fig. 1-16A shows a 10V source connected to two terminals
on a box. To keep things simple for the moment, we will
consider our source to be a battery. At the moment, we have
absolutely no idea of what might be inside the box, but meters
connected to the terminals tell us that when we apply 10V, the
current will be 1A. We can then say that the impedance
“*looking into’" the box is 10 ohms when the applied voltage is
10V.

If we are told that the box contains no nonlinear elements
and no sources, we can assume that the impedance will also be
10 ohms for any other value of applied voltage. On this basis,
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we can assume that the equivalent of whatever happens to be
in the box is a 10-ohm resistor, as shown in Fig. 1-16B. This
does not mean that the box actually contains a 10-ohm resistor.
It might, for example, contain two 20-ohm resistors connected
in parallel (Fig. 1-16C).
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Fig. 1-16. Equivalent resistance.

So far the situation is very simple; there is no room for
confusion. Things are a little more complicated in Fig. 1-17A,
where we have an AC source and a method of measuring not
only the current but also its phase angle, with the applied
voltage as a reference. Our applied voltage is 10V, and the
current in this case is 2A. We also find that the current lags the
voltage by the now-familiar angle of —36.87°. (Since the
current is lagging we prefix the phase angle with a minus
sign).

The question is now “What is the equivalent circuit of
whatever is in the box?"" We can specify the ratio of the
applied voltage to the current as an impedance. If we are only
interested in the magnitude of the impedance, we can apply
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Ohm'’s law just as we would in the DC case. We indicate the
impedance that we find in this way as |Z| to indicate that we
know its magnitude but not its angle. Thus we can simply
divide the magnitude of the voltage by the magnitude of the
current to get the magnitude of the impedance.

V 10
|Z|= -IITII- = 5 = 50hms

Of course, this doesn’t tell us the whole story. We know
that the current is not in phase with the applied voltage, so we
know that there is some sort of reactive component in the box.
To find both the magnitude and angle of the impedance, we can
perform the same division in polar form.

v 10
7 = = =5, 36.87 ohms
I 2, —36.87° P800

This tells us that the box has an impedance that can be
represented by the vector number 5 , 36.87°. The fact that the
angle is positive indicates that whatever is in the box is
inductive. We can derive an equivalent circuit for whatever is
in the box by converting the impedance from polar to
rectangular form, giving

Z=R+jX, =4+ j3ohms

Thus we can say that the equivalent circuit of whatever is
inside the box is a 4-ohm resistor in series with a 3-ohm
inductive reactance (Fig. 1-17B). This doesn’t mean that these
elements are actually in the box. It just means that whatever
actually is in the box will behave as these two elements at the
frequency of interest. The box might, for example, contain a
series-resonant circuit as in Fig. 1-17C.

Self-Impedance

So far we have been concerned with the impedances that
are seen looking into the terminals of a box that contains only
two terminals and no source. We call this impedance the
self-impedance of the circuit inside our box. We could also call
it the driving-point impedance seen at the terminals of the box
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Fig. 1-17. Equivalent circuits containing inductance and capacitance.

As long as we have only one source of energy and one pair of
terminals in a circuit, the self-impedance and driving-point
impedance are really the same thing. Thus if we are talking
about circuit elements such as resistors, coils, and capacitors,
the driving-point impedance means the same thing as the
self-impedance.

In Fig. 1-18A we have a completely different situation, and
one that we will encounter very frequently in antenna work.
Here the box has two sets of terminals. We will assume that
the bottom terminals, 1’ and 2', are connected together and
grounded. Again, we have no idea whatever of what might be
inside the box, except that it contains no sources or nonlinear
elements. There are several measurements we could make
that would enable us to draw an equivalent circuit for
whatever happens to be inside the box.

We could, for example, apply a voltage to one pair of
terminals while the other pair is open-circuited, as shown in
Fig. 1-18B, and take the ratio of the applied voltage to the
current. In Fig. 1-18B we see that if we apply 10V to the
terminals at the left side of the box, a current of 1A will flow. If
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we divide the 10V by 1A, we get an impedance of 10 ohms. We
call this the self-impedance between terminals 1 and 1’ and
usually identify it as Z;, . Remember that the other terminals
were open when we made this measurement. By a similar
measurement we see in Fig. 1-18C that the self-impedance
between terminals 2 and 2’, at the right (which we will call
Z, ) side of the box is 5 ohms. These two measurements tell us
what will happen when we energize either pair of terminals
separately, but they give no information whatever on what
connection may exist between the two sets of terminals or
what will happen if we energize both sets of terminals at once.

Mutual Impedance

There is another measurement that will enable us to draw
an equivalent circuit for whatever is in the box. We can
connect our source to one pair of terminals and measure the
voltage that appears across the other pair, as shown in Fig.
1-18D. The ratio of the voltage that appears between terminals
2and 2’ to the current that is flowing in terminals 1 and 1’ is
called the mutual impedance Z, between the two sets of
terminals. In Fig. 1-18D it is seen to be 2 ohms. It may be
surprising at first, but as long as our box contains only linear
circuit elements (resistances, inductances, and capacitances),
it makes no difference to which terminals we apply the source.
We could have connected the source between terminals 2 and
2’, and the voltmeter between terminals 1 and 1’, the mutual
impedance would be the same in both cases.

Zl2 =ZZI

This concept of mutual impedance between two sets of
terminals should be clearly understood. It is probably
responsible for more confusion about the behavior of antenna
feeder systems than any other factor. Remember, the mutual
impedance is the ratio of the voltage that appears across one
pair of terminals to the current flowing in the other pair of
terminals. The voltmeter used to measure this voltage must
draw negligible current.

We are now in a position to draw an equivalent circuit for
whatever happens to be in the box of Fig. 1-18A. There is a
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Fig. 1-18. Unknown circuits with two sets of terminals.

principle in circuit theory that any linear, bilateral circuit
containing only linear passive components can be represented
at one frequency by either a T or pi network. We will use the
equivalent T-circuit because it will make the concepts involved
clearer.

Figure 1-19A shows a T-network. We can use the
measurements of Fig. 1-18 to find the values of the elements in
this circuit that will make it behave exactly like the box. When
terminals 2 and 2" are open-circuited and current is flowing in
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terminals 1 and 1’, the output voltage will be simply I, x Z, .
Therefore, Z, is equal to the mutual impedance Z, , in this
case 2 ohms.

Next, we know that the impedance at terminals 1 and 1’
when the other terminals are open is the self-impedance
between these terminals. We will call this impedance Z, , and
in our example it is 10 ohms. Now, if we are to see this
impedance when we look into terminals 1 and 1’ with the other
terminals open, then Z, must be equal to Z;, — Z; . in this
case 8 ohms. Similarly, Z. must be equal to Z, — Z» . where
Z» is the self-impedance between terminals 2 and 2'. We have
now completely pinned down our equivalent circuit as shown
inFig. 1-19B.

2.=Z11~ 213 Z¢=2p2— 242
AU o -

| O
Zp=212
I'0— . 02
(A)
1 2
8 3
2
10— . —072
8)

Fig. 1-19. Deriving an equivalent I-circuit.

Driving-Point Impedance

So far we have defined two kinds of impedance in
connection with our circuit: the self-impedance of each pair of
terminals, and the mutual impedance between the pairs. We
know that when terminals 2 and 2’ are open, the driving-point
impedance between terminals 1 and 1'—that is, the impedance
seen looking into these terminals—will equal the self-
impedance associated with them. The same is true of the other
pair of terminals. But if there was something connected to both
pairs of terminals at the same time, the driving-point
impedance at one pair would probably not equal its
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self-impedance. We will not attempt to derive an expression
for driving-point impedance into one pair of terminals that will
hold regardless of what might be connected across the other
pair.

Figure 1-20 shows our equivalent T-network with voltages
applied to, and current flowing in, both sets of terminals. We
can use Kirchhoff’s voltage law to write an equation for the
voltages around the loops in the figure. The equation for loop 1
is

Vi=hiZy — 2y +2y) - hLZ,
=12Z, - L le

If we divide all of the terms of this equation by I, , we get

It is easy to see that this equation gives the ratio of the voltage
between terminals 1 and 1’ to the current that will flow in
them. Since the ratio of a voltage to a current is an impedance,
we call this impedance the driving-point impedance between
terminals 1 and 1’ and represent it by the symbol Z . Thus the
equation for the driving-point impedance between terminals 1
and 1' becomes

Z =17, + -i Zy
I
This equation is very important and should be studied
carefully. It shows that in a T-network, which is a good
equivalent for many antenna circuits, the driving-point
impedance depends on the currents flowing in both pairs of
terminals. Remembering this simple equation will often
remove confusion that results from interaction between the
networks in antenna feeder systems.

We have now defined three different kinds of impedance
associated with a network that has two sets of terminals. (1)
The self-impedance (Z,, or Z,) associated with a pair of
terminals is the impedance seen looking into the terminals
when nothing is connected to the other set of terminals. (2) The
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mutual impedance (Z,, or Z, ) is associated with two pairs of
terminals and is the ratio of the voltage across one pair of
terminals to the current flowing in the other pair. The
magnitude of the mutual impedance depends on how the two
pairs of terminals are connected together. In a more general
sense, it depends on how energy gets from one pair of
terminals to the other pair. (3) The driving-point impedance
associated with a pair of terminals is the ratio of voltage to
current at the terminals under certain conditions. The
driving-point impedance depends not only on self-impedance
but also on the currents flowing in the network.

To keep the mathematics comparatively simple, we have
assumed that the impedances in our equivalent circuit were
pure resistances. In general, this will not be true. Most of the
impedances we encounter in antenna work will have reactive
components. Thus the Zs in Fig. 1-20 would ordinarily have
both magnitude and a phase angle. Furthermore, the current
in loop 2 will often not be in phase with the current in loop 1.
Thus we will have the phase angles of the currents to consider.

21y =242 2~ 2y

J Fig. 1-20. Equivalent I-circuit with
voltages and currents.

NEGATIVE RESISTANCE

A concept that rears its ugly head with annoying frequency
in directional-antenna work is negative resistance. When a
driving-point resistance found in an antenna feeder system
turns out to be negative. it merely means that the current, and
hence the power, is flowing out of the terminals rather than
into them. This is illustrated in Fig. 1-21. Here we have the
now-familiar T-network with two sources—one at each set of
terminals. All of the voltages, polarities. and current
directions are shown. We can now compute the driving point
impedance at both sets of terminals: but in doing so. we should
keep track of the polarity of voltages and the direction of
current flow. We assume that a positive current is caused by a
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positive voltage. Thus the driving-point impedance Z between
terminals land 1’ is

z,= 2V jg0HMS  zp= 2L _300HMS
2.5A “0s

Fig. 1-21. Negative impedance.

Now we compute the driving-point impedance between
terminals 2and 2':

V, 15V
Z, = = = —30 ohms
L -0.5A

Because of the signs. we find that the impedance between
these two points is a negative number. All this means is that
power is flowing out of terminals 2 and 2', as shown by the
dashed line, instead of into them. A negative resistance means
that energy is flowing opposite to the direction that it would
flow in if the resistance were positive. The magnitude of the
impedance is still simply the ratio of voltage to current at that
point. Note that this is the only sense in which we shall use the
concept of negative impedance. It is used in a different sense
in connection with some semiconductor devices and
oscillators. but that will not concern us. It is also important to
note that only a driving point or mutual impedance can be
negative: self-impedance is always positive.

The value of our equivalent circuit can be better
appreciated by considering Fig. 1-22. Here we have a very
large. albeit fictitious, box that contains two antennas instead
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of circuit elements. By using our equivalent T-network, we can
reduce what would be a horrendous problem in field theory to
acomparatively simple problem in circuit theory.

| Pors

D2

P 2

5

Fig. 1-22. Antenna system and
equivalent circuit.

21— 242 22— 212
10 o2

VECTORS AND POWER

Earlier, in applying Ohm’s law, we found that we could
multiply or divide vectors to find voltage, current, or
impedance, all of which are vectors. The question naturally
arises as to whether we can multiply voltage expressed as a
vector by current expressed as a vector to find the power in a
circuit. For example, if the voltage applied to a circuit was
10 . 0°V and the current was 5 ;, —60°. could we multiply them
to get power? The answer is no. If we were to multiply them
we would get

10 ,0° X 5, —60° =50 , —60°

The fact that the product has an angle tells us that something
is wrong. Power is simply the rate of flow of energy, and it
doesn’t have an angle. In other words, power is not a vector
quantity.

The reason that this simple approach to finding power
does not work is that the power moving past a point in a circuit
is equal to the product of the voltage and the component of the
current that is in phase with the voltage. Figure 1-23 shows a
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vector representation of our voltage and current. It can
readily be seen that the component of the current that is in
phase with the voltage is given by I cos 8, or 5 x 0.5, so the
power in our circuit is given by

P=V(lcosf) =10 X 5 x 0.5 = 25W

\c
—

IN-PHASE COMPONENT
OF CURRENT =lcos0

eV

Fig. 1-23. Vector diagram of current of 5A displaced from voltage of 10V by
60°.

EQUIVALENT SOURCES, POWER
TRANSFER, AND EFFICIENCY

So far we have had very good luck in drawing equivalent
circuits for boxes containing only passive elements. We need
an equally simple way of representing sources of energy, such
as broadcast transmitters. This can be accomplished by a
principle known as Thevenin’s theorem, which is fully as
useful as any of the principles we have investigated so far.

Thevenin’s theorem states that any circuit that contains
sources can be represented at one frequency by an ideal
voltage source in series with an impedance. Of course, this
equivalence only holds true over the operating range where
everything is linear. We couldn’t, for example, short-circuit
the output of a transmitter and expect it to behave as a linear
device—in fact, it probably wouldn’t behave at all.

Over its normal operating range, however, we can expect
a transmitter, signal generator, or almost any other source of
power to look electrically like the equivalent circuit of Fig.
1-24. The voltage source V; is an ideal constant-voltage
source. It will produce the same output voltage regardless of
what is connected to its terminals. The resistance R; is the
effective internal resistance.
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Fig. 1-24. Thevenin equivalent circuit.

—0

Now that we have an equivalent circuit for a source, we
can look at how load impedance will affect the amount of
power we get out of the source. Figure 1-25A shows a source
connected to a variable load resistance R, . Figure 1-25B
shows a plot of the power delivered to the load as a function of
the ratio of the load resistance R, to the equivalent source
resistance R . It can be seen that the maximum power will be
delivered to the load when Ry = R, , that is, when the load
resistance is equal to the internal resistance of the source.

On the surface, this looks like a very desirable situation,
but a little deeper look will show that it probably isn’t as
attractive as it first seems. The same current flows through
both the internal source resistance and the load resistance.
When the two resistances are equal, just as much power is
dissipated internally in the source as is delivered to the load.
We get maximum power in the load, but the price we pay is an
operating efficiency of only 50%. If the load applied to a

Rs
AR .
2 .
RL o) n
S -
Z J
E .
(A) Z
<]
T T T T T
05 10 15 2 2.5
Fig. 1-25. Maximum power transfer. RURs
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broadcast transmitter were equal to its effective internal
impedance, the efficiency of the final stage would only be 50%.
Most transmitters are operated at much higher efficiencies.

In most cases. we don't know the internal impedance of a
broadcast transmitter. The manufacturer normally specifies
only the load impedance into which it is designed to work.
Actually this is all we need to know to keep an antenna system
operating properly. It is helpful, however, in trying to
understand the operation of feeder systems. to get an idea of
what impedance is seen looking into the transmitter output
terminals. We can get a very rough idea of this from the
specified load impedance and the operating efficiency of the
final stage.

Suppose, for example, that we have a transmitter that is
designed to work into a 50-ohm load at an efficiency of 70%
(Fig. 1-26). The efficiency of this circuit expressed as a
decimal, is given by
R,

Ry + R,

1
=R | —— —1
i "[eff ]

Substituting numbers into this. we get

eff =

Rearranging

1
Ry = 50[—7 = 1] = 30[{0.43] = 21.40hms

R <50

EFF=0.7

Fig. 1-26. Transmitter operating into 509 load with 70% efficiency.

Thus the internal impedance is about 21 chms. This is only
an approximation, but it shows that when a transmitter is
operating at an efficiency of greater than 50%., its internal
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resistance is lower than the source impedance into which it
operates. This means that a transmitter, in general, acts more
like a constant-voltage source than a constant-current source.
Looking at Fig. 1-26. we can see that if Ry was much lower
than R, , the voltage across the load wouldn’t change much
with small changes in load resistance. Also, if Rs was much
larger than R, , the load current wouldn't change much with
small changes in load resistance.

CONDUCTANCE, SUSCEPTANCE, AND ADMITTANCE

The behavior of circuits and circuit elements is described
in terms of the relationship between voltages and current at
their terminals. This is most commonly done by specifying
resistance, reactance, and impedance at the terminals. As we
have seen. these three parameters are ratios of voltage to
current and are measured in ohms. When circuit elements are
connected in series, the total circuit impedance can be found
by a vector addition of resistances and reactances. When
elements are connected in parallel, finding the total circuit
impedance is more complicated.

With the parallel connection it would be much easier if we
were to use the reciprocals of resistance, reactance, and
impedance. These are conductance, susceptance, and
admittance, respectively, and they are measured in mhos.
These reciprocal quantities are ratios of current to voltage.
Just as we could say that one ohm equals one volt per ampere.
we could say that one mho equals one ampere per volt.

Disadvantages of Admittance

The reason admittance is not used more widely in
broadcast work is twofold. In the first place, component values
are traditionally specified in ohms. Although it might be easier
to use mhos to solve a problem, by the time we have converted
everything to mhos we have done as much work as if we had
solved the problem using ohms. For example, suppose we
want to find the total resistance of a 2-ohm and an 8-ohm
resistor connected in parallel. The conventional approach is to
take the product of the two and divide it by their sum.

2x8 16
=——— =— = l.60hms

2+8 10
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We can find the total conductance of two conductances in
parallel by simply adding them together. To do this in the
above case, we convert each resistance to a conductance, then
add them together

G =1/2 + 1/8 = 0.5 + 0.125 = 0.625 mho

Then, to use the result in most applications, we would have to
convert the conductance back to a resistance. If we had to
make the computation by hand, we would gain nothing.
Fortunately, with an electronic calculator the computation is
very simple. Thus we can use the concept of admittance
whenever it will either simplify computation or make things
clearer.

The only remaining obstacle to using admittance,
conductance, and susceptance is that the magnitudes, being
unfamiliar, are apt to be meaningless. For example, most
broadcast engineers wouldn’t realize immediately that an
admittance of 20 millimhos was the same as an impedance of
50 ohms.

Inasmuch as the concepts are very useful, we will take a
few minutes to review their meaning and the techniques for
using them.

Conductance and Susceptance

Conductance is the reciprocal of resistance and is usually
represented by the symbol G. That is,
1
G= —
R
Thus, a resistance of 5 ohms would correspond to a
conductance of 0.2 mho or 200 millimhos.
Susceptance is the reciprocal of reactance and is usually
represented by the symbol B. The formulas for inductive and
capacitive susceptance are

B = 2xfC B - 1
2nFL
Because susceptance is the reciprocal of reactance. inductive
susceptance has a minus sign, whereas capacitive reactance
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has a minus sign. Thus the total susceptance in a parallel
circuitis B- — B, .

Admittance Y is a complex number that represents the
ratio of current to voltage. It includes both conductance and
susceptance, and in a parallel circuit it is equal to

Y=G+jB

The method of converting resistance to conductance, or
reactance to susceptance, is straightforward. We simply take
the reciprocal of one to get the other. When it comes to
converting between impedance and admittance, there is often
a great deal of confusion. For example, suppose that we have a
resistance of 4-ohms in series with an inductive reactance of 3
ohms. We know that the magnitude of the impedance is 5
ohms. The impedance may be expressed as

Z=R+ jX =4+ j3=>50hms

Now suppose that we want to find the admittance looking into
this circuit. Since 1/4 =0.25 and 1/3 = 0.33. there is a
temptation to say that the admittance looking into the circuit is

Y =G + jB =102+ j0.33mho

This temptation should be resisted. because the expression is
wrong. To find the right way to make the conversion. we must
take a look at what our equations mean.

When we write the expression Z = R + jX. we are stating
that the impedance between two wires, such as the leads of the
box in Fig. 1-27A, is the same as the impedance of a circuit
consisting of a resistance R connected in series with a
reactance X. When we write the expression Y = G + jB, we
are saying that the admittance between two wires, such as the
leads of the box in Fig. 1-27B, is the same as the admittance
seen across a circuit containing a conductance G connected in
parallel with a susceptance B. The two circuits are not the
same. If we want to find the total admittance of two elements
in series. we must take their sum over their product. just as
with resistors in parallel.

When we are concerned only with admittance and
impedance. and when they are expressed in polar form, we
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Z=R + jX y=G + B
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Fig. 1-27. Conductances and susceptances connected in series (A) and
parallel (B).

can simply take the reciprocal of one to get the other, that is,
divide the vector quantity into 1. Thus if we want to find the
admittance corresponding to an impedance of 2 , 30° ohms, we
calculate

1 1
G= = = 0.5 ,_=30° mho
2,30 Lot
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Chapter 2

Principles of
Transmission Lines

It is necessary to locate an antenna at some distance from the
transmitter. In television and FM stations the antennas are
located on tall towers to get good coverage: in AM directional
stations, antennas consist of two or more widely separated
towers. It is necessary to get the signal to the antenna with a
minimum of loss and with as little radiation as possible along
the way. Transmission lines of one type or another are used for
this purpose. In this chapter we consider properties of
transmission lines that are fundamental and apply equally to
all types of broadcast antennas. Later we will consider feeder
systems for particular antenna types.

One of the most important requirements for a
transmission line is that it must not radiate signals. Radiation
patterns can be controlled best at the antenna itself. If the line
should radiate, it would not only waste energy, but it might
radiate energy in such a direction as to defeat the directional
design of the antenna. A directional antenna is designed to
radiate a minimum amount of energy in certain directions, to
“protect”” areas served by other stations on the same
frequency. If the transmission line radiated, it might put an
interfering signal in the protected area.

Whenever an RF current flows in a wire more than about
1/10 wavelength long, the wire will tend to act as an antenna
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and radiate energy. In a transmission line this tendency
toward radiation is minimized by using closely spacea
conductors in which currents are flowing in opposite directions
(Fig. 2-1). Inasmuch as the currents in the two conductors are
in opposite directions, the fields from them will also be in
opposition: and at a distance from the line, the fields will tend
to cancel.

MAGNETICFIELD ELECTRIC FIELD

Fig. 2-1. Fields around a transmission line.

Field cancellation is fundamental to the operation of
transmission lines, antennas, and all forms of shielding. We
can assume that whenever an electric charge moves, it will
tend to make every other charge in the universe move at the
same frequency. If other charges in the same area move inthe
opposite direction, they will have equal and opposite effects on
still other charges in the universe. This is how a coaxial cable
minimizes radiation. The field from the outer conductor
cancels the field from the inner conductor. It can be shown
mathematically that this cancellation takes place right at the
outer conductor. The outer conductor does not confine the field
in the way a water pipe contains water.

IDEAL LINE

It is easier to gain insight into the operation of many
practical devices by first considering an ideal model, studying
its behavior, and then modifying it so that it more closely
resembles a practical device. We do this with transmission
lines by starting out with an idealized line. We assume that it
consists of two parallel conductors that have no series
resistance and no leakage between them.

Having decided to neglect resistance, we can almost
intuitively draw the equivalent circuit. Since each of the wires
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has appreciable length. it has inductance. We know, therefore,
that there will be series inductances in our circuit. Since the
two conductors are in close proximity, we know that there will
be capacitance between them. It is not surprising, therefore, to
find that the ideal transmission line has an equivalent circuit
like that shown in Fig. 2-2A. We can, without serious error,
further simplify the circuit by placing all of the inductance in
one conductor as in Fig. 2-2B.

EERE]

Fig. 2-2. Equivalent circuit of an ideal transmission fine.

Of course, in an actual line the inductance and capacitance
are distributed uniformly along the line, and not lumped as
shown. Nevertheless, the equivalent circuit very closely
approximates an actual line. In dealing with this circuit, we
will not consider each of the inductances and capacitances
separately, but will deal with the inductance and capacitance
per unit length of the line. That is, we will use units like henries
per foot and farads per foot.

CHARACTERISTIC IMPEDANCE

One very important property of any transmission line is its
characteristic impedance. We can best understand this term
by considering a fictitious line that is infinitely long. Let us
connect a battery to this ideal line through a switch, as shown
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in Fig. 2-3. Current flows when the switch is closed. All of the
capacitances along the line have no charge in them before the
switch is closed, so current rushes in to charge them. The
current is not infinitely large, however, because it is limited by
the series inductances.

As a matter of fact, there is a definite relationship between
the applied voltage and the resultant current that depends only
on the construction of the line itself. Since the line is assumed
to be infinitely long, a steady current flows. No matter how
many fictitious capacitors become charged, there are always
more to charge. What this means is that energy is flowing into
the line, where it is stored in electric and magnetic fields.
Since the energy is continuously flowing from left to right in
the figure, and not returning, the voltage and current are in
phase, and the line **looks like™ a resistance.

r

—- 100V

o s s s
S A O

Z_J-:oov WI WI WI WI
1T T T T

100V
Zo= —— =500
2A

Fig. 2-3. Impedance of an ideal transmission line.

In circuit theory we call the ratio of voltage to current
impedance, and since there is a definite relationship between
the applied voltage and the resulting current in our infinitely
long line, we can say that it has a characteristic impedance. In
our example in Fig. 2-3 the applied voltage is 100V, and the
resulting current is 2A; we can say that the characteristic
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impedance Z, of the line is

100V
=——— = 50 ohms
2A

The voltage and current in the line are in phase. This means
that the characteristic impedance of our ideal line is a pure
resistance of 50 ohms.

As long as the ideal transmission line is infinitely long. it
looks just like a resistor. There would be no way of telling by
electrical measurements whether the battery in Fig. 2-3 is
connected to an infinite line having a characteristic impedance
of 50 ohms or to a 50-ohm resistor.

In Fig. 2-4 we have the same 50-ohm line connected to a
100V battery. Suppose we were to cut the transmission line at
the line A-A. Inasmuch as the transmission line is said to be
infinite, the remaining infinite section to the right of the cut
must still look electrically like a 50-ohm resistor. We can
therefore cut the line and terminate it in a 50-ohm resistance,
as shown in Fig. 2-4B, and it will still look like a 50-ohm resistor
at the input terminals. The line is then said to be terminated in
its characteristic impedance. The input impedance of a line so
terminated equals its characteristic impedance. This is true

2A A
—_ ]
]
l
—_100v | TO0
: INFINITY
T .
< : & . 2 o—
1
A
(A)
2A
—»
= 100V 500
T RESISTOR
(B)

Fig. 2-4. Termination of a transmission line.
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regardless of the length of the line. as long as we neglect any
losses. When a line is terminated in some value other than its
characteristic impedance, its input impedance will depend on
the value of the terminating impedance and the length of the
line. as well as on its characteristic impedance.

In some older literature the characteristic impedance of a
transmission line is called the surge impedance, because it is
the ratio between the applied voltage and the current that
would surge into the line if it were infinitely long.

The value of the characteristic impedance of a
transmission line depends entirely on its physical
construction. In a lossless line the characteristic impedance is

given by
Z| =V L

C

where L is the inductance in henries per unit length, and C is
the capacitance in farads per unit length. Any units of length
may be used as long as they are the same in both cases.

The characteristic impedance can also be expressed in
terms of the physical dimensions of the line. In a 2-wire open
line

d
Z, =276 log—
2D

where d is the diameter of the conductors, D is their spacing,
and both are expressed in the same unit.

In a coaxial cable in which the space between conductors
is filled with air, the characteristic impedance is given by

D
Z, =138 log-(-i-

where d is the diameter of the inner conductor, D is the
diameter of the outer conductor, and both are expressed in the
same unit.

A plot of characteristic impedance as a function of line
dimensions is given in Fig. 2-5.
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Fig. 2-5. Characteristic impedance graphs for 2-wire and coaxial ines.

REFLECTIONS

We are not always fortunate enough to have all of the
transmission lines we work with terminated in their
characteristic impedance. In standard broadcast work this is
our goal, but in FM and TV we actually use the properties of
transmission lines that are not terminated in this way to
produce changes in impedance level.
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The two extreme cases of lines that are not terminated in
their characteristic impedance is when the far or receiving
end of the line is either open or shorted. By studying these two
cases. we can gain some insight into how lines behave with
other values of terminating impedance. Let us first consider
the case when the receiving end is open.

Open Transmission Line

Figure 2-6A shows a source connected through a switch to
a line. Both the internal impedance of the source and the
characteristic impedance of the line are pure 50-ohm
resistances. For simplicity let us say that our source produces
a DC voltage and that its open-circuit voltage is 100V. When the
switch is closed, current rushes into the line to charge its
distributed capacitance. Before the energy reaches the end of
the line, the source has no way of ‘‘knowing’’ that the receiving
end is open, so the line behaves just like a 50-ohm resistor.
Thus. during this time, the voltage from the source divides
evenly between its own internal impedance and the impedance
of the line. There is 50V across the line and 50V across the
internal impedance of the source. Thus a 50V wave will
propagate along the line toward the receiving end. Bear in
mind that the only way the energy gets to the end of the line is
by being stored in the electric and magnetic fields associated
with the conductors.

Just as the voltage wave reaches the end of the line, there
is a current of 1A flowing in the equivalent inductance L of the
last section of the line. This current charges the last capacitor
C to a voltage of 50V. When this happens, the current stops
abruptly: there is no place for it to go. Current is needed to
sustain the magnetic field associated with L, and when the
current drops to zero, the field collapses. The collapsing field,
in turn. induces a voltage of such polarity as to increase the
voltage across C, as shown in Fig. 2-6B. All of the energy that
was stored in the magnetic field of L is transferred to C, and
this is just enough to double the voltage to 100V. Thus a 50V
wave propagates back toward the source, as shown in Fig.
2-6C. raising the voltage across the capacitor to 100V. The
current involved is 1A because of the characteristic
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impedance of the line. When the first capacitor in the line
charges to 100V, the whole line is charged to 100V. There is
now no current flowing in the line and no voltage drop across
the internal impedance of the source. as shown in Fig. 2-6D.
Under this condition all of the energy in the line is stored in its
capacitance.

I._,SOV | S 1A—»
v——o"" o— 0
50V—m o
PEN
100V — END
ov —
—0

o)

Fig. 2-6. Reflection from an open transmission line.
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There are two points worth noting about what happens
when a signal reaches the open end of a transmission line:

1. The voltage wave is reflected, in phase. with no change
in waveform.

2. The current is reflected. in the opposite phase. with no
change in waveform.

Shorted Transmission Line

The situation where the receiving end of the line is shorted
is shown in Fig. 2-7. In Fig. 2-7B, because the end of the line is
shorted, we end the equivalent circuit with an inductance (a
capacitor connected across the shorted end of the line would
have no effect). As in the case where the end of the line was
open. when the switch is closed a voltage wave of 50V travels
down the line. Just ahead of the wave the voltage across the
line is zero, and just behind the wave it is 30V. At the instant
the wave reaches the end of the line (Fig. 2-7B), there is
nothing to limit the current in the inductor, and it increases
until the induced voltage is just high enough to reduce the
voltage across the last capacitor to zero. Note that the current
is in the same direction, but that the induced voltage has the
opposite polarity of that traveling down the line from the
source. A very short time later the voltage rises across the
preceding inductance and discharges the next capacitor. Thus
there is a reflected wave of 50V that is out of phase with the
original wave, as shown in Fig. 2-7C. This reflected wave
reduces the voltage across the line to zero. The reflected wave
of current is equal in magnitude to the original current, and
since it is in phase with the original current, the current in the
line doubles. After the reflected wave reaches the source, the
current in the line is 2A: there is no voltage across the line, and
all of the voltage drop is across the internal impedance of the
source (Fig. 2-7D). The energy in the line is then all stored in

its inductance.
There are two points worth remembering about what

happens when a signal reaches the shorted receiving end of a
transmission line:

1. The voltage wave is reflected. out of phase, with no
change in waveform.
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Fig. 2-7. Reflection from a shorted transmission line.

2. The current is reflected, in phase, with no change in
waveform.

RF Signals on Transmission Lines

We use transmission lines to carry RF signals, not DC
voltages as in the preceding examples. The reflection action is
exactly the same for either RF or DC signals at any instant,
but in antenna work we are not interested in instantaneous
phenomena. Rather we are interested in the steady-state
behavior of transmission lines. Because RF signals are
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periodic sinusoidal voltages and currents, the manifestation of
reflection will be considerably different than in the DC case we
have just looked at.

STANDING WAVES

When an RF signal reaches the open end of a transmission
line, the voltage is reflected. in phase with the incident voltage
(Fig. 2-8). The reflected wave is what we would get if we folded
the forward or incident wave back on itself. The actual voltage
distribution along the line is the sum of the incident and
reflected waves. Although the incident wave is moving to the
right in the figure, and the reflected wave is moving to the left,
the sum of the two will be a wave that doesn’t move at all along
the line. It is called a stationary or standing wave.

— o FORWARD
(A) WAVE
®) REFLECTED
WAVE

©) RESULTING
1 STANDING WAVE

A B C D E F G H
Fig. 2-8. Standing waves.

At points B, D, F, and H, of Fig. 2-8, the voltage varies
between a maximum positive and maximum negative value.
At points A, C. E, and G, the incident and reflected waves
cancel completely at all times, so the voltage at these points is
zero. In a practical line the voltages do not actually reach
zero. but some other minimum value.

The points of maximum voltage of a standing wave are
usually called voltage loops, and the points of minimum
voltage are called voltage minima, or nulls.

It is easier to get a good feeling for how standing waves
are formed by considering the behavior of a rope that is tied
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securely at one end (Fig. 2-9). When the rope is given a shake,
a wave travels along it toward the far end. which is secured.
When the wave reaches the end of the rope, it is reflected back
along the rope. and it gives a jerk when it gets back to the
shaker's hand. If the rope is shaken rapidly, waves travel
forward and backward along the rope at the same time. If the
shaking is done at the proper rate. a standing wave is formed
on the rope, as shown in the figure. This situation is analogous
to the formation of standing waves on a transmission line. In
both cases. a standing or stationary wave is formed by the sum
of two waves of the same frequency moving in opposite
directions.

INCIDENT WAVE REFLECTED WAVE

Fig. 2-9. Standing wave on a rope.

If we were to measure the voltage of a standing wave
along a transmission line with an RF voltmeter and plot the
indications of the meter as a function of distance along the line,
we would get a plot like that of Fig. 2-10. The indication of the
meter would be proportional to the rms value of the voltage at
each point and would not show the instantaneous value or
polarity of the voltage. Standing waves are usually plotted in
this way.

Standing Waves for Various Terminations

Inasmuch as a standing wave on a transmission line is
caused by a reflection. which in turn is caused by a mismatch
at the receiving end. the nature of the standing wave depends
on the way in which the line is terminated. Figure 2-11 shows
several different terminations and the resulting standing-wave
patterns.
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Fig. 2-10. Plot of a standing wave along a transmission line.

In Fig. 2-11A the line is terminated in its characteristic
impedance, and since there is no reflection in this case, there
is no standing wave. In Fig. 2-11B we have the same situation,
but there is some loss in the line. Although there is no
reflection and no standing wave, the voltage drops along the
line because of the losses in the line.

Figure 2-11C shows the standing-wave pattern that results
when the receiving end of a transmission line is open. At the
receiving end of the line, the voltage is maximum and the
current is minimum. This is what we might expect, since with
an open circuit at the end of a line, there is no place for the
current to flow. The standing-wave pattern resulting when the
receiving end of a line is shorted is just the opposite (Fig.
2-11D). The voltage at the receiving end of the line is now
minimum and the current is maximum. This, again, is what
we might expect because there can be no voltage across a
short circuit. In the cases of open and shorted lines, the peak
value of the standing wave will be twice the peak value of the
incident voltage.

Whenever a transmission line is terminated in anything
except a resistance equal to the characteristic impedance of
the line, there will be a reflection and, consequently, a
standing wave on the line. If the termination is a resistance
that is higher or lower than the characteristic impedance of
the line, some of the energy in the incident wave will be
absorbed in the termination: but since the resistance is not
equal to the characteristic impedance of the line, some of the
energy will also be reflected.
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for various terminations.

The voltage of the reflected wave can be found from the
formula
R. - 2

Vi = Ve
‘ ' R, + Z,

where V; = reflected voltage
Ve = forward voltage
R, = terminating resistance
Zy, = characteristic impedance

Inspection of this equation shows that the reflected voltage
Ve will always be equal to or less than the forward voltage
Ve . It cannot be greater than the forward voltage.
Voltage Standing-Wave Ratio

A common measure of the magnitude of a standing wave
on a transmission line is the voltage standing wave ratio, or
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VSWR. 1t is the ratio of the maximum voltage on the line to the
minimum voltage: that is,

VSWR = YVoros

The voltage standing wave ratio is also numerically equal to
the ratio of the terminating resistance to the characteristic
impedance of the line, or vice versa. It is usually arranged so
that it will be a number greater than 1. Thus

VSWR = LA ori
Z,

15

The voltage standing wave ratio is based on the maximum
and minimum values of voltage on a transmission line. We
might just as well have specified a current standing wave
ratio: it would have the same numerical value. In fact, much
of the time, the ratio is specified simply as standing wave
ratio. The reason for using the voltage standing wave ratio is
that it is usually easier to measure the voltage on a line than
the current.

In general, a value of terminating resistance that is small
compared with the characteristic impedance of the line will
cause a standing wave pattern that is similar to that from a
short circuit, except that the standing wave isn't as large.
Similarly, with a resistance that is higher than the
characteristic impedance of the line, the standing wave
pattern will be similar to that resulting in an open circuit.
Again, the standing wave will not be as large.

In Fig. 2-11, E and F show the standing-wave patterns that
result from resistive terminations that are higher and lower
than the characteristic impedance of the line. The size, or
magnitude, of the standing wave is a measure of how much the
termination deviates from the characteristic impedance. The
closer the value of the terminating resistance to the
characteristic impedance, the smaller the standing wave.

Inductive and Capacitive Terminations

So far we have considered the termination of a
transmission line to be a pure resistance. We found that if the
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termination were equal to the characteristic impedance of the
line, all of the energy would be absorbed by the load. If the
termination had any other value, some of the energy would be
reflected back toward the source. Let’s look at what would
happen if the termination were a pure inductance or
capacitance. We know that reactive elements such as
inductances and capacitances only store energy and do not
dissipate it: therefore, in a lossless line with a reactive
termination, all of the energy will be reflected back toward the
source.

The exact nature of a reflection from a reactive
termination depends on the value of the reactance. In Fig. 2-12
the terminations have a reactance that is numerically equal tc
the characteristic impedance of the line.

Figure 2-12A shows a capacitive termination. The
capacitive reactance and the resistive characteristic
impedance of the line form a 45° phase-shifting network. The
reflected voltage is shifted 45° in one direction, and the
reflected current is shifted 45° degrees in the opposite
direction. The standing-wave pattern is such that the voltage is
maximum when the current is minimum, and voltage peaks
are separated from current peaks by 9%0°, or 1/4 wavelength
along the line.

v \vs N7/
1 y Yy
Q T
A
/ Ny \ N y Ny
[ / y ¥
¢ 3o
B

Fig. 2-12. Standing-wave pattern for reactive terminations.

Figure 2-12B shows an inductive termination. The pattern
is the same as in the capacitive case except at the load. Here
the phases of voltage and current are just the opposite. This is
because the phase shift of the voltage in an inductance is just
the opposite of that in a capacitance.
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DRIVING-POINT IMPEDANCE FOR VARIOUS LINES

We have found that every transmission line has a
characteristic impedance that depends only on the dimensions
of the line. and not on its length or what may be connected to it.
When the line is terminated in its characteristic impedance,
the driving-point impedance—that is, the impedance seen
looking into the sending end—is equal to the characteristic
impedance of the line. We have also seen that with any other
termination, of any type, there are standing waves on the line.
Since impedance is the ratio of voltage to current, we can see
that whenever there is a standing wave, the impedance varies

along the line.
Figure 2-13 shows an arbitrary length of transmission line,

terminated in a short circuit, together with a plot of standing
waves of voltage and current that exist on the line. At the
termination the voltage is zero because a voltage cannot exist
across a short circuit. The current at this point is maximum
because current is maximum through a short circuit. The
voltage reaches a maximum value at a point 1/4 wavelength
from the load and then drops back to zero at a point 1/2
wavelength away from the load. Thus, if we cut the line at a
point 1/4 wavelength back from the shorted termination (A-A
in Fig. 2-13), the driving-point impedance would be very high.
The line would for all practical purposes look like an open
circuit. If the line was cut 1/2 wavelength from the load, it
would have a very low impedance and would look like a short
circuit. At other fractions of a wavelength the line would look
like something between a short and an open circuit. We are
now considering only lines with no losses, and a short-circuit
termination, which doesn’t absorb any energy. Now we can
draw another conclusion about the driving-point impedance of
such a line: the driving-point impedance seen looking into such

-—12 )\—bl
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a line is either zero, infinity, or some value of reactance; that
is. the voltage and current at the sending end will be 90° out of
phase. A resistive value of driving-point impedance would
mean that energy was being dissipated somewhere rather than
simply being stored in the line.

In studying the behavior of open and shorted lines, it is
useful to consider an element of a line that is 1/8 wavelength.
Figure 2-14A shows a 1/8-wavelength line that is open at the
receiving end. Since the end is open and the line is not very
long. very little current will flow in it, and therefore
practically no magnetic field will exist around the wires. This
is equivalent to saying that there is little or no inductance. On
the other hand, there will be a substantial voltage between the
wires. so a substantial amount of energy may be stored in the
electric field. This is the same as saying that the line has
capacitance. Thus an open-ended 1/8-wavelength section of
transmission line looks electrically like a capacitor at its
driving point. That is, the driving-point impedance is
capacitive.

We can intuitively get a good idea of the magnitude of this
capacitive reactance. We know that the voltage and current
are shifted 90° in a 1/4-wavelength line, so it is logical to
suspect that they will be shifted 45° (in opposite directions) ina
1/8-wavelength line. Thus the 1/8-wavelength open-ended line
will behave exactly the same as a capacitive termination that
produces a 45° phase shift.

From circuit theory we know that a 45° phase shift is
produced in an RC circuit where the capacitive reactance is
numerically equal to the series resistance. In a 1/8-wavelength
line that is open at the receiving end, the capacitive reactance
seen looking into its terminals is numerically equal to the
characteristic impedance of the line. Thus, an open-ended
1/8-wavelength section of a 50-ohm line will have a
driving-point impedance equal to a capacitive reactance of 50
ohms.

Now. let's look at a 1/8-wavelength section of line in which
the receiving end is shorted (Fig. 2-14B). Here, since the end is
shorted and the line isn’t very long, there is not much voltage
drop across it or. consequently, much energy stored in the

74



electric field. This means that it will have little or no
capacitance. On the other hand, since the far end is shorted,
there is a large current, and quite a bit of energy is stored in
the magnetic field. This means that inductance will
predominate. By the same reasoning that we used in
connection with Fig. 2-14A, we can conclude that a shorted
1/8-wavelength section of line will look like an inductive
reactance equal to the characteristic impedance of the line.
Thus a 1/8-wavelength section of 30-ohm line shorted at the
receiving end will have a driving-point impedance equal to an
inductive reactance of 50 ohms.

oV
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(A)OPEN-ENDED 1/8-WAVELENGTHSECTION
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(B)SHORTED 1 8-WAVELENGTHSECTION,

Fig. 2-14. Conditions in a 1/8-wavelength line.

QUARTER-WAVE SECTION

One of the most interesting lengths of transmission line is
the quarter-wave (1/4-wavelength) section. This line inverts
the impedance in which it is terminated. The shorted
quarter-wave line may be thought of as an open
1/8-wavelength section feeding a shorted 1/8-wavelength
section, as shown in Fig. 2-15A. This is equivalent to putting a
capacitance and an inductance in parallel, so the shorted
quarter-wave line looks like a parallel-resonant circuit (Fig.
2-15B)—that is, it has a very high driving-point impedance. If
there was no loss in the line, the driving-point impedance
would be infinite. In practical lines with some loss, the
driving-point impedance of a shorted quarter-wavelength
section is not infinite, but very high.
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The shorted quarter-wavelength section resembles a
parallel-resonant circuit in other ways. The driving-point
impedance is a capacitive reactance at frequencies above
resonance, and an inductive reactance at lower frequencies.

When the quarter-wave line is open at the receiving end,
the voltage at the end is high and the current low, as we would
expect with an open circuit. At the sending end—which is
quarter wavelength. or 90° away—both voltage and current
have changed by 90°. This means that at the sending end the
current is high and the voltage is zero, so at the sending end
the line looks like a short circuit. Of course, since all of the
energy is reflected from the open end, there is no dissipation of
energy. The only type of circuit that stores energy in both the
electric and magnetic fields, and yet looks like a short circuit
at one frequency, is the series-resonant circuit. The open
quarter-wave line does. indeed, look electrically like a
series-resonant circuit, as shown in Fig. 2-15C.

C

Fig. 2-15. Quarter-wave section of transmission line.
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Thus. from the sending end, a shorted quarter-wave line
looks like an open circuit, and an open quarter-wave line looks
like a short circuit. This impedance inversion takes place with
any value of termination except a resistance equal to the
characteristic impedance of the line. When a quarter-wave
line is terminated in a resistance greater than its
characteristic impedance, its driving-point impedance is a
resistance that is smaller than its characteristic impedance,
and vice versa. The mathematical relationship between the
characteristic impedance Z, of the quarter-wave line, its
terminating impedance Z,_ . and its driving-point impedance
Z, isgivenby

L _ %
Z Z,
which can also be written
7, = 2
"oz,

Thus a quarter-wave section of 50-ohm line terminated in a
25-ohm resistor will have a driving-point impedance of

_sg"_ 2500
25

= 100 ohms

Using an equation given earlier, we can calculate the reflected
voltage to be one-third of the incident voltage and opposite in
sign. With this information we can plot the standing wave on

the line (Fig. 2-16).
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Fig. 2-16. 1/4X section of 50Q terminated in 25Q.
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The quarter-wave line can be wused as an
impedance-matching transformer at a single frequency. This
is of little interest in standard AM broadcasting, but it can be
used to advantage in FM and TV antenna systems.

The equation given for the driving-point impedance of a
quarter-wave line can be used to show that a quarter-wave line
also inverts reactance. A quarter-wave line that is terminated
in a capacitance has an inductive reactance at its driving
point, and vice versa (Fig. 2-17).

A —]

P E

CAPACITANCE LOOKS L!KE INDUCTANCE AND VICE VERSA
Fig. 2-17. Reactance inversion.

THREE-EIGHTHS-WAVELENGTH LINE

The impedance of the three-eighths-wave line can be found
as easily as that of the quarter-wave line. It consists of two
sections that we are already familiar with—the
one-eighth-wave line and the quarter-wave line. Consider first
the three-eighth-wave line that is shorted at the receiving end
(Fig. 2-18 A and B). The shorted eighth-wave section will look
like an inductive reactance equal numerically to the
characteristic impedance of the line. This inductive reactance
then terminates the quarter-wave section, which will invert
the impedance so it will look like a capacitive
reactance—again, numerically equal to the characteristic
impedance of the line.

When the three-eighth-wave line is open at the receiving
end. as shown in Fig. 2-18C, the driving-point impedance is an
inductive reactance equal to the characteristic impedance of
the line.

HALF-WAVE LINE

The half-wave line is of interest because it is used in FM
and TV antenna feeder systems and because it can lead to
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Fig. 2-18. Three-eighths-wavelength section,

confusion when a line in an AM feeder system happens to be
approximately half-wavelength long. The operation of the
half-wave line is easy to see, because it consists of two
quarter-wave sections connected together, as shown in Fig.
2-19. The quarter-wave section nearest the termination inverts
its impedance. The next quarter-wave section inverts the
impedance again bringing it back to its original value. Thus
the driving-point impedance of the half-wave line is exactly
equal to the terminating impedance.

SUMMARY OF TRANSMISSION-LINE IMPEDANCES

We use the term impedance in three separate senses when
working with transmission lines:

1. The characteristic impedance Z of the line itself
depends only on the physical construction of the line,
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Fig. 2-19. Half-wave section.

and not on its length or on what might be connected to
it.

2. The terminating or load impedance, Z is the

impedance that is connected to the receiving end of
the line.

3. The driving-point or sending-end impedance Z, is the

impedance seen looking into the sending end of the
line. When the load impedance is equal to this char-
acteristic impedance, the driving-point impedance is
equal to the characteristic impedance. With any other
value of load impedance, the driving-point impedance
will depend on the load impedance, the characteristic
impedance, and the length of the line.



We can get a rough idea of the driving-point impedance for
almost any line length and termination from the situations we
looked at on the preceding pages. These can be summarized as
follows:

1. Open or shorted eighth-wave sections of line have a
driving-point impedance that is reactive and
numerically equal to the characteristic impedance of
the line.

2. Quarter-wave sections invert the impedance con-
nected to the receiving end.

3. Quarter-wave sections act like resonant circuits.

4. Half-wave sections have a driving-point impedance
equal to the terminating impedance.

Figure 2-20 shows whether the impedance along an open or
shorted line is inductive, capacitive, or resistive. These charts
are based on low- and high-resistance terminations, rather
than on short and open terminations, because, in practice, we
can get neither a perfect short circuit nor a perfect open
circuit.

VELOCITY OF PROPAGATION

In the preceding sections of this chapter, we have
considered the lengths of transmission lines in fractions of a
wavelength. We have ignored the velocity of propagation of a
signal in a particular line, on which depends the length of a
wave.

The wavelength of a signal—that is the physical length of
one wave of the signal in space—is given by

A=<

where ¢ is the velocity of propagation—300,000,000 meters per
second—and f is the frequency in hertz. If a signal were to
travel at this same velocity in a transmission line, we could
use this formula to find the physical length of a wavelength of
transmission line. But, more often, the velocity is somewhat
lower in a transmission line than in free space.

There is a relationship between the characteristics of free
space and the velocity of propagation in it that will give us a
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little insight into velocity of propagation in a transmission line.
The velocity of propagation of an electromagnetic wave in
space is not just an arbitrary velocity, but is related in a
definite way to the electric and magnetic properties of space.
The velocity is given by

1

Ky €
where u , = magnetic permeability of free space
& = permittivity of free space

C =

As stated earlier, in the rationalized mks system of units,
these properties of space are given by

o = 1.26 X 10°°
& =885 x 107"
Thus
c =126 x 885 x 107" /1 =300 x 1 meters per
second

You will probably never have any occasion to use the values of
% and & . but the above equation will shed a little more light
on the subject of propagation.

We can write a somewhat similar equation for the velocity
of propagation in a transmission line:

1
V= —m——
VLC

where L is the inductance of the line in henries per unit length,
and C is the capacitance of the line in farads per unit length.
The unit of length may be anything—feet, meters, etc.—just as
long as the same unit is used for both inductance and
capacitance.

The relationship between this equation and the preceding
one for the velocity of propagation in free space can be
appreciated by noting that permeability enters into the value
of inductance, and permittivity enters into the value of
capacitance. In an open-wire line in which the wire is made of
nonmagnetic material and most of the space between the
wires is filled with air, the velocity of propagation will be very
close to that in free space. If, however, the space between the
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conductors is filled with a material that has a dielectric
constant greater than 1, the capacitance will increase and the
velocity of propagation will decrease. In the extreme case of a
coaxial line that is filled with a dielectric material such as
polyethylene, the velocity of propagation is as low as 60% of
the value of propagation in free space.

Manufacturers of transmission lines specify the velocity of
propagation in their products in terms of a velocity factor
(VF). The velocity factor is the ratio of the velocity in the line
tothe velocity in free space. It is expressed either as a decimal
or a percentage. Thus, for example, if a line has a velocity
factor of 0.8, or 80%. the velocity of propagation will be 809% of
the velocity in free space.

Now we are in a position to find wavelengths in actual
transmission lines. The physical length A of a wavelength in
meters in a particular type of transmission line is given by

300
A= TXVF

where VF is the velocity factor of the line and f is the
frequency in megahertz.

The number of wavelengths in a given physical length of
transmission line is given by

l
> = A
where l, = number of wavelengths
I = physical length of the line in meters
A = length of a wavelength in the particular cable as
given by the preceding equation

In many applications it is more convenient to express the
electrical length of a transmission line in electrical degrees.
Inasmuch as there are 360° in a wavelength, the length of a
cable in degrees is given by

ALY = A1 X360 X VF
where the symbols have the same meaning as in the preceding
equations.
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LOSSES IN TRANSMISSION LINES

So far, in all of our discussions of transmission lines, we
have considered only ideal lines with no losses of any kind. In
many practical problems we can take this approach and
ignore losses. In other cases, losses must be considered.

In any practical transmission line there are two kinds of
losses—those that result from the series resistance of the
conductors in the line and those that result from leakage
between the conductors of the line. These two types of losses
can be taken into consideration by adding two components to
our equivalent circuit for a transmission line (Fig. 2-21). The
series resistance R represents losses due to the resistance of
the conductors, and the shunt component G represents losses
due to leakage between the conductors. The shunt component
is more conveniently considered as a conductance: that’'s why
we use the symbol G. In most broadcast applications the
leakage is so low that G is very low and can be ignored.
(Remember, a low conductance corresponds to a high
resistance.)

Fig. 2-21. Loss resistances in transmission lines.

The loss that is significant in broadcast applications is the
series resistance of the conductors. The most common type of
transmission line used in broadcasting is the coaxial line, so
we use this type of line in our investigation of losses. Because
the inner conductor is smaller than the outer one, its
resistance is higher and it accounts for most of the loss in a
coaxial cable.

Due to the skin effect, RF currents only flow in the outer
skin of a conductor. The skin depth decreases as frequency
increases, hence the resistance increases. As a matter of fact,
the series resistance of a coaxial cable increases very nearly
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as the square root of the frequency. Thus the loss in a coaxial
cable will be much greater at FM and TV frequencies than in
the standard broadcast band.

It is interesting to note that there is a relationship between
the characteristic impedance of a coaxial cable and the loss
that it introduces. Assume that the diameter of a coaxial cable
is some known value. It might appear that we could reduce the
loss by increasing the diameter of the inner conductor. To
some extent this is true, but as the diameter of the inner
conductor is increased, the characteristic impedance of the
cable is lowered. This means that the voltage-to-current ratio
becomes smaller. In other words, more current will be
required to transmit a given amount of power. Since the loss is
proportional to the square of the current, we will eventually
reach a point where losses actually increase as the diameter of
the inner conductor increases.

Suppose that we take the opposite approach and reduce the
diameter of the inner conductor. This raises the characteristic
impedance of the cable and reduces the current, but it also
raises the resistance of the inner conductor, so a point will
again be reached where the losses increase.

Thus there is an optimum ratio of the outer- and
inner-conductor diameters that will result in minimum loss. In
cable where the space between the conductors is air, this ratio
is about 3:1, giving a characteristic impedance of about 70
ohms. This value is rarely used in broadcasting because of
other considerations, such as power-handling capacity, which
optimizes at a value of characteristic impedance closer to 50
ohms.

There is another effect of losses in transmission lines that
is rather unexpected. When we take the two resistances in Fig.
223 into consideration, the equation for the characteristic
impedance becomes

_/R+jL
G+ij,C

where L and C are the inductance and capacitance per unit
length, R and G are resistance and conductance per unit
length, and w is 27f. From this equation we can see that the
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equation used earlier results when R and G are small enough
to be ignored. Surprisingly, if the series resistance R becomes
large. the characteristic impedance will have a reactive
component. In broadcast work, lines are short and the j, L
term of the equation is high, so the reactive portion of the
characteristic impedance is negligible.

REFLECTION COEFFICIENT

If we know the characteristic impedance of a transmission
line, its length, and the load impedance connected to it, we
have enough information to compute the voltage and current
at any point on the line, as well as the standing-wave ratio.
There are many different ways in which the parameters of a
transmission line can be manipulated mathematically. In the
process many different characteristics of transmission lines
are described. The practical value of this is that we have many
different measurements we can make to obtain the
information we need.

At standard broadcast frequencies we make heavy use of
impedance bridges, so we must be able to determine the
behavior of a transmission line from impedance values. At the
higher frequencies used for FM and TV broadcasting, we
usually use some sort of reflectometer, which tells us the
standing-wave ratio, or the forward and reflected power on the
transmission line. Therefore we must be able to use these
parameters to determine the behavior of the transmission
lines. By means of several equations we can usually find what
we need to know about this behavior from the information that
is available from our instruments.

At the load of a transmission line, and all along the line for
that matter, we consider three different voltages. The first is
the forward voltage V; , which travels down the line toward the
load. The second is the reflected voltage V,, which travels
back along the line toward the source whenever the load
impedance is not equal to the characteristic impedance of the
line. The third voltage interest is the actual voltage along the
line, which is the vector sum of the forward and reflected
voltages at each point along the line. This voltage, as we have
seen, varies with the distance along the line and is called a
standing wave.
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One useful parameter that specifies the nature of the
reflection is the reflection coefficient K. It is a vector and is
the ratio of the reflected voltage to the forward voltage, which
isgivenas

V.
K=—
v,

The usual way of specifying the reflection coefficient is in
polar form: K ~ 6.

The reflection coefficient is merely another way of
specifying what we have already specified in other terms. It is
not surprising, therefore, to find that the reflection coefficient
is related to the load impedance Z and the characteristic
impedance Z, of the line. The relationship is
Z. -4
Z, + %

K=

This equation can be rearranged to the following form, which
is useful in some applications.

Z, Z,
K= — -1 — +1
YA %

The reflection coefficient is related to the standing-wave
ratio by the equations
1+ K| IK| = VSWR -1
1 - |K| VSWR + 1

VSWR =

The bars in |[K| mean that, in these two equations, we are only
interested in the magnitude of the reflection coefficient: we
don't need the phase angle, because a standing-wave ratio is
not a vector. It tells us the ratio of the maximum to minimum
voltage on a line, but it doesn’t tell us where the maximum and
minimum voltage occur along the line.

Two additional concepts that are useful for dealing with
transmission lines are forward power and reflected power.
These concepts can be extremely troublesome if not properly
understood. We can avoid confusion by remembering that
power is merely the rate of flow of energy: energy is the more
fundamental concept. Bearing this in mind. we can define the
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forward power on a transmission line as the average rate at
which energy moves from the source toward the load. If the
line was terminated in its characteristic impedance, the
forward power would be the same as the actual power
delivered to the load. assuming that there are no losses in the
line.

When a line is not terminated in its characteristic
impedance. some of the energy will be reflected from the load.
Thus we can define reflected power as the average rate at
which energy flows back from the load. along the line toward
the source.

There are several points to keep clear about forward and
reflected power. They are both merely ways of expressing the
rate at which energy flows back and forth along a transmission
line when the load impedance is not equal to the characteristic
impedance of the line. This rate has little to do with how much
power is being delivered by the transmitter. For example, it is
possible to have a transmission line with a forward power of
150W and a reflected power of 50W with a transmitter
delivering only 100W. The forward and reflected power deal
only with the energy flow on the line that results from the line
‘being mismatched. A good example of this is the ideal lossless
line that is open at the receiving end. If the characteristic
impedance of the line was 50 ohms and the voltage applied to
the line by the transmitter was 100V, both the forward and
reflected powers would be 200W. and yet, once the standing
wave was set up. the transmitter wouldn't be delivering any
power at all.

Obviously. if a transmission line is terminated in its
characteristic impedance, there will be no reflected power and
no standing waves. If the line is mismatched. there will be
standing waves, and the reflected power will no longer be zero.
Both standing waves and reflected power are measures of the
same thing. We can convert from forward and reflected power
tostanding-wave ratio by the equation

\/reflected power
forward power

VSWR = -
g /reflected power

forward power

1+
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PRACTICAL TRANSMISSION LINES

There are three types of transmission lines that are used in
broadcasting: open-wire lines, coaxial cables, and hollow
waveguides. The coaxial cable has almost completely
replaced the open-wire line, but there are still a few AM
stations that use open-wire lines. Waveguides are only used at
the UHF TV.

Open-Wire Line

The earliest transmission line used in broadcasting was
the open 2-wire line, shown in Fig. 2-22. This line is simple and
reliable, but unfortunately the fields from the conductors are
strong at an appreciable distance from the line, with the result
that any conductors in the vicinity of the line will disturb its
characteristics. If a transmission line of this type is not to
radiate energy, the currents in the two conductors must be
equal in magnitude and opposite in direction. If any
surrounding structure—or even the ground, for that matter—is
closer to one conductor than the other, there will be capacitive
currents that will cause the line currents to be unbalanced.
Thus the line will radiate.

0:5\ L)
| ) 1\\
" LINES
u_@L Yo~
b\ b

SPREADERS

Fig. 2-22. Two-wire transmission line.

A somewhat more recent open-wire line uses five or six
conductors in an arrangement such as that shown in Fig. 2-23.
The outer conductors in this arrangement are all at the same
potential and are connected to the grounded side of the
transmitter and the antenna. This arrangement is something
like a crude approximation to a coaxial cable. Unfortunately
the conductor spacing between the spreaders will change as
the wires swing in the wind, which will cause the
characteristic impedance of the line to vary. These lines are
rapidly being replaced by coaxial cable.
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Fig. 2-23. Five-wire open transmission line.

Solid-Dielectric Coaxial Cable

Figure 2-24 shows a coaxial cable that consists of a solid or
stranded inner conductor with a braided outer conductor. The
space between the inner and outer conductors is filled with a
solid dielectric material such as polyethylene. The entire
assembly is covered with a weathertight plastic jacket.
Usually the power-handling capacity of this type of line is quite
limited, and it is rarely used except in some low-power AM
stations. This cable is flexible, and for this reason has often
been used in sampling systems for directional antennas. In
many cases, however, it is being replaced because it tends to
be unstable, expecially when the ambient temperature varies
over a wide range.

Semirigid Coaxial Cable

Semirigid coaxial cable is made with soft-drawn copper
inner and outer conductors. The line is not particularly
flexible, but it can be bent a few times before breaking. and
therefore it is easy to fit to a particular application. The cable
is made by a continuous process and is shipped on reels. Thus
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it is possible to get single runs that are long enough to reach
from the transmitter to the antenna in many stations. This
avoids the necessity of making splices and joints, which are
time consuming and potentially troublesome.

In the semirigid cable the inner and outer conductors are
spaced by either beads or a helix of dielectric material. These
lines are becoming popular for broadcast use because they are
easy to install and because very low standing-wave ratios can
be obtained. Figure 2-25 shows a sketch of a helical insulated
line.

Fig. 2-25. Semirigid line with helical insulator.

Rigid Coaxial Lines

The coaxial line with the lowest losses and the highest
power-handling capability is the rigid line, which comes in
sizes of up to 6 in. diameter. Because it is rigid, it cannot be
shipped on reels. It is usually supplied in 20-foot lengths. The
lengths are fastened together by flanges and inner-conductor
projections, called bullets (Fig. 2-26).

Many rigid coaxial lines are pressurized with nitrogen or
dry air to keep moisture out of the space between the

Fig. 2-26. Rigid coaxial cable line.
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Table 2-1. Typical Attenuation Values for Coaxial Lines.

Attenuation. dB per 100 {t. at the Following
Line Frequencies. MHz Velocity
Factor
1.0 5.0 10.0 50.0 100 500
RGS/U 0.175 0.405 0.582 137 21 5.2 0.66
RG-17U 0.061 0.158 0.238 0.62 095 2.7 0.66
Rigid 7/8in. 0.0375 0.089 0.124 0.28 042 11 0.87
15/8in. 0.0195 0.043 0.063 0147 0213 0.48 0.96
31/8in. 0.0104 0.023 0033 0.073 0108 024 098
61/8in. 0.0049 0.011 0.016 0033 0.049 01 098
Heliax™ 7/8in. 0.034 0.077 on 0.25 0.36 0.46 0.92
3in. 0.013 0.029 0.042 0.097 0130 033 093
5in. 0.0072 0.017 0.023 0.053 0.076 019 093

*Registeredirade name

conductors. Pressure gauges are provided so that any leaks in
the line can be detected.

The selection of a particular line is based on allowable loss
or attenuation, power-handling capability, and ease of
installation and maintenance. The attenuation of a line
increases with frequency. Table 2-1 shows the attenuation of
several different types of coaxial cables at various

frequencies.
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Chapter 3

Radiation
and Propagation

There is no doubt that radiation is the least understood aspect
of broadcasting. Most textbooks on the subject are of little
help. because they are either too mathematical or too
superficial. In this chapter we will review the subject of
radiation, using no more mathematics than necessary. We will
start out with the half-wave antenna because it is easiest to
understand, then we will consider antennas that are more
commonly used in broadcasting.

In considering radiation we will not be very anxious to
make everything strictly rigorous, rather we will take an
approach that will make the subject more palatable.

Before getting into the details of how an antenna radiates
energy, we should make a distinction between two different
types of fields we will encounter:

1. The induction field about an antenna is the same as the
electric or magnetic field that is found around any
conductor that carries electricity. Its intensity
diminishes rapidly with distance, or to state it more
rigorously: The intensity of the induction field varies
inversely with the square of the distance from the
source of the field. Thus, if we move twice as far from
the source of an induction field, the intensity of the
field will be one-fourth as great. This field diminishes
so fast that it is of no value for broadcasting.
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2. The other field around an antenna is the radiation
field. This field is properly called an electromagnetic
field because it has both electric and magnetic
components. These components act together to
propagate the signal. The radiation field diminishes
much more slowly with distance than the induction
field: its intensity is inversely proportional to the
distance from the antenna. It is this characteristic of
the radiation field that makes it useful for broad-
casting.

As discussed in the preceding chapter, when elec-
tromagnetic energy is carried by a transmission line, it isn’t
carried in the wires, but in the electric and magnetic fields
associated with the wires. The conductors merely serve to
guide the energy and cancel the fields at some distance from
the transmission line. The object of a transmission line is to
get energy from one place to another with a minimum of
radiation. The object of an antenna is to radiate a maximum
amount of the energy fed to it.

INDUCTION FIELD

In Fig. 3-1A we have a source of RF energy connected to a
transmission line. For the sake of simplicity, we will assume
that it is a 2-wire open line. The receiving end of the line is
open, so if it is an ideal line, all of the energy reaching the
receiving end is reflected back toward the source. We can
think of the last 1/4 wavelength of the line, marked in the
figure, as an open-ended quarter-wave section of transmission
line. Such a section looks electrically like a series-resonant
circuit. If we bend the ends of the last 1/4 wavelength of the
line out so that they are at right angles to the wires in the line
(Fig. 3-1B) we have what is commonly called a half-wave
dipole antenna at the receiving end of the line.

By analogy with an open quarter-wave section of
transmission line, the half-wave dipole seems electrically like
a series-resonant circuit when we look into its terminals. The
half-wave dipole differs from an ordinary series-resonant
circuit in many ways. but we can gain a little insight into
antennas by comparing them.
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Fig. 3-1. Development of a dipole !
from a transmission tine.
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In Fig. 3-2A there is no charge in the capacitor in the
series-resonant circuit. When the signal is applied, current
rushes in to charge the capacitor. Because the current is
maximum, the magnetic field around the coil is maximum. An
analogous thing happens with the dipole. At the instant shown,
there is no charge on the ends of the dipole. The current is
maximum, carrying positive charges to one end and negative
charges to the other. Thus the magnetic field around the dipole
is maximum.

Figure 3-2B shows the situation a quarter of a cycle later.
In the resonant circuit the capacitor is fully charged, so the
current, and hence the magnetic field, is zero. All of the energy
is stored in the electric field of the capacitor. Back at the
dipole the ends are charged and the current and the magnetic
field are zero. The electric field between the ends of the dipole
is maximum.

In Fig. 3-2C we have progressed still another quarter of a
cycle. This is one-half cycle, or 180°, later than when we
started so we can expect things to be 180° out of phase with
what they were in Fig. 3-2A. The current in the resonant circuit
and dipole is maximum, as is the magnetic field, but the
current is flowing in the opposite direction of the current in
Fig. 3-2A. It is an easy step to Fig. 3-2C, where the charge is
maximum and the current and magnetic field are minimum.
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Thus in Fig. 3-2 we see that the energy in both a
series-resonant circuit and a half-wave dipole is stored
alternately in the electric and magnetic fields. Assuming that
there are no losses and no radiation, the energy simply
pulsates back and forth between the electric and magnetic
fields around the antenna. These fields constitute what we
called the induction field of the antenna. Note that they are 90°
out of phase with each other.
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Fig. 3-2. Analogy of dipole and series-resonant circuit.

If this were all there is to it, antennas would be simple, and
easy to understand. Of course, antennas must radiate energy.
To understand radiation. we must go back to some of the most
fundamental concepts of electricity and modify them slightly
from the way that we learned them. Most of us first studied
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electricity from the viewpoint of circuit theory. This is fine
when we are dealing with circuits, where currents and
voltages stay in the wires where we want them. It is
inadequate when we deal with antennas, where we don’t want
the signals confined to circuits, but radiated through space.

INDUCED VOLTAGE

Figure 3-3 shows the familiar principle of induced voltage.
When a conductor intercepts a changing magnetic field, a
voltage is induced in the conductor. The induced voltage is
proportional to the rate of change of the magnetic field. The
equation for the induced voltage is

v= _,A4¢

—n—

At

where V is the induced voltage, n is the number of turns on the
coil, A¢ is a small change in magnetic flux, and At is a small
change in time. Thus A¢/At represents the rate of change of
the magnetic field. The minus sign indicates that the polarity
of the induced voltage is such that any current it causes to flow
produces a magnetic field opposing the changing field that
caused the induced voltage. This is about as far as we ever
carry this principle when we are studying circuit theory.

. . CHANGING
Fig. 3-3. Principle of induced MAGNETIC

voltage.
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As far as the principle is concerned, the coil isn't
necessary at all. Whenever we have a changing magnetic field,
we have a changing electric field—that is, we have an induced
voltage, even in an insulator. Of course, unless we have a
conductor, we have no way of measuring the induced voltage.

The general principle, then, is that whenever we have a
changing magnetic field, we also have a changing electric
field. even in free space. The intensity of the electric field is
proportional to the rate of change of the magnetic field. In
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Fig. 3-4. Magnetic field induced
by current.

fact. when we are dealing with radiation, it is best to think of
the electromagnetic field as the fundamental concept, and the

electric and magnetic fields as components of it.

ELECTRIC DISPLACEMENT

Whenever an electric current flows in a conductor, there
will be a magnetic field surrounding the conductor (Fig. 3-4).
Before we get into radiation, we must explore this concept in
more detail. Figure 3-5A shows an RF source connected
through leads to a capacitor. We know that an RF current will
flow in the leads and that, as a result, a magnetic field will
enclose the leads. Of course, the magnetic field will vary at the
frequency of the source. Now let’s look at what happens inside
the capacitor.

We know that the dielectric material between the plates of
the capacitor is actually an insulator and that no current, or at
least no electrons, can pass through it. When we studied
elementary electricity, we learned that there is an apparant
current in the capacitor, which is actually the result of
electrons ‘‘piling up’’ on one plate and draining off the other
plate. For this reason the apparent current through a
capacitor is also called a displacement current.

We shall now consider the interesting question of whether
there is a magnetic field associated with the displacement
current inside a capacitor. This isn’t an easy question. In fact,
there was a great deal of debate on the subject among early
workers in electricity. If we think of an electric current only as
a flow of electrons, we are tempted to say that displacement
current inside a capacitor is a fictitious thing and couldn’t
possibly produce a magnetic field. This is wrong. James Clerk
Maxwell, a Scottish physicist. was the first to postulate that
there is in fact a magnetic field associated with displacement
current. He used this assumption in deriving his now-famous
equations.
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Earlier we found that whenever we have a changing
magnetic field, we also have a changing electric field. Now we
add to this that whenever we have a changing electric field,
even when we do not have a conductor ( Fig. 3-5B), we also
have a changing magnetic field. Thus we see that the two fields
are inseparable. Inasmuch as we see that these fields can exist
and produce each other even in free space, the concept of
radiation is becoming clearer.
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Fig. 3-5. Electron current and dis-
placement current with their
magnetic fields.

(B)

PROPAGATION TIME

Electromagnetic phenomena do not take place instan-
taneously: there is some time required. Electromag-
netic fields do not travel at infinite velocity: they travel at the
velocity of light, which, although fast compared with any other
phenomenon, is still not infinite.
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To see why we might need a time delay to explain
radiation, look at Fig. 3-6. Here we have a half-wave dipole at
the same instant of time as in Fig. 3-2B. The charge between
the ends of the dipole is maximum, and the current is
minimum. According to the law of charges, unlike charges
attract. How, then, can the opposite charges flow away from
each other to opposite ends of the dipole (Fig. 3-6)? If
electromagnetic phenomena took place instantaneously, the
charges could not do this. The fact is, the positive charges at
the top of the dipole, at the instant shown, are actually still
being repelled by the positive charges that were at the other
end of the dipole a half-wave earlier in time. This occurs
because it takes 1/2 wavelength (180°) of time for
electromagnetic energy to travel 1/2 wavelength through
space.

+ + + +
+ + +
+ +
+
@ Fig. 3-6. Charges on dipole at one
instant.

RADIATION

Once we have one kind of field, it will generate the other,
and the action will continue causing the energy to propagate
through space. This is shown in a rather crude fashion in Fig.
3-7. Here we have an electric field at the left, and as it

\\ [ \ DIRECTION
@ C |> OF PROPAGATION
—_—
N
H
/N
7 N~ S Fig. 3-7. Electric and magnetic

fields.
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collapses. it sets up a magnetic field, which in turn sets up
another electric field, and so on.

Just how the field gets free of the antenna in the first place
isn't as easy to visualize. A rough idea of what happens can be
gained from Fig. 3-8. In Fig. 3-8A the charges at the ends of the
antenna are maximum, as is the electric field. In Fig. 3-8B the
current is such as to reduce the charges and hence the field.
The lines of the field at the antenna are brought closer
together. The field doesn’t collapse completely, however,
because some time is required for all electromagnetic effects
to be observed at a distance. Thus, as the opposite charges on
the ends of the antenna come together and cancel each other,
the lines of the field become closed on each side of the antenna
{Fig. 3-8C). About this time, the field in the dipole reverses, so
it repels the electric lines that have become detached, causing
them to propagate through space as shown in Fig. 3-8D. Thus
we will have a field with both electric and magnetic
components, moving through space at the speed of light.
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Fig. 3-8. Creation of closed electric lines at an antenna.

The electric and magnetic lines are closed paths, so near
the antenna, the wavefront will appear to be spherical.
However, the sphere becomes large rapidly, and as soon as we
are some appreciable distance from the antenna, we can
consider the wavefront to be a plane, with the electric and
magnetic lines at right angles.

In antenna work the electric component of the field is
usually called the E-field, and the magnetic component is
called the H-field. This is because the letter E is used to
symbolize the electric field intensity, and the letter H is used to
symbolize magnetic field intensity.
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POLARIZATION

If a straight antenna is used to radiate a wave, the electric
field lines are parallel to the antenna. So far, we have only
considered antennas in space; we have not considered the
ground. In broadcast work, antennas are usually either
vertical or horizontal with respect to the ground. The electric
and magnetic fields are also so oriented. We call the direction
of the fields the polarization of the wave. Traditionally the
direction of the electric field, rather than the magnetic field, is
taken as the reference. Thus the wave from a vertical antenna,
whose electric field is perpendicular to the ground, is called a
vertically polarized wave. Hence all waves encountered in the
standard broadcast band are vertically polarized. Likewise,
the wave from a horizontal antenna, whose electric field is
horizontal, is called a horizontally polarized wave. Waves from
FMand TV antennas are usually horizontally polarized.

It is possible to have a combination of vertical and
horizontal polarization, in which the electric field actually
rotates with respect to the ground. This is called circular
polarization. At this writing, it is being used extensively in FM
broadcasting and experimentally in TV broadcasting.

Figure 3-9 shows the orientation of the fields for vertical
and horizontal polarization. It shows the electric field lines at
an instant of time. The lines are actually propagating through
space in the direction shown (left to right). The shaded sine
waves in the figure show the relative field intensity at various
points in space at a particular instant.

FIELD INTENSITY

The intensity of a radiated wave is measured in volts per
unit of distance. The fundamental unit is the volt per meter
(V/m). A field having an intensity of one volt per meter is very
strong compared with most of those encountered in
broadcasting, so the millivolt per meter, or even microvolt per
meter, is commonly used.

A field having an intensity of one volt per meter (1 V/m)
would induce one volt in a conductor one meter long if the
conductor was held parallel to the electric field and
perpendicular to the direction of the wave. The radiation field
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Fig. 3-9. Vertical and horizontal polorization.

varies inversely with the distance from the antenna. Thus if a
wave has a field intensity of 50 mV/m at a point one mile from
an antenna, it will have a field intensity of 25 mV/m at a
distance of 2 miles from the antenna.

The intensity of an electromagnetic field in volts per meter
is really only a measure of the electric field or the electric
component of the electromagnetic field. Fortunately we need
not specify the intensity of both the electric and magnetic
components of the electromagnetic field to describe it
completely. Once we are far enough away from the antenna
that we can consider the waves to be plane waves, there is a
very definite relationship between the electric component of a
wave and the magnetic component. We only need to specify
one of them to completely describe the intensity of the wave,
and the electric component is traditionally used for this

purpose.
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There 1s an intriguing relationship between the
magnitudes of the electric and magnetic components of a
plane wave in free space. The ratio of the two is

E 1

H_ o / &

where E is the intensity of the electric field in volts per meter,
H is the intensity of the magnetic component in amperes per
meter ¢ is the permittivity, and u, is the permeability of free
space. Thus we have

E ___ 1  _3p Vm
H \/8.85 x 1077 A/m
1.26 x 105

Since the meters in the numerator and denominator cancel
out, we have

E

— =377V/A

H
That is, the ratio of the electric component to the magnetic
component of a plane wave is 377V per ampere. Now, we know
that the ratio of volts to amperes is impedance, so we conclude
that free space has a characteristic impedance, or wave
impedance, of 377 ohms. This numerical value is not of
particular interest, but it does make it clear why we have to
measure or specify only one component of the field.

FIELD INTENSITY VERSUS DISTANCE

The radiation intensity of a wave varies inversely with the
distance from the antenna. The reason for this will become
clear if we go back to the more fundamental concepts of power
and energy. What the antenna is actually radiating is
electromagnetic energy. It is this energy that causes the
charges in receiving antennas to move when impinged on by
the radiated wave. The rate at which energy is propagated by
awave can be specified in terms of watts per square meter.
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Suppose that the antenna in Fig. 3-10 is radiating energy
through the beam shown at a rate of 8W. At point A, the beam
intercepts an area of just one square meter. We can say that
the power density, or wave power, at that pointis 8 W/nr .

8W ANTENNA
1m?2
4m2
B
*-—A—>
- 2A -

Fig. 3-10. Variation in power density with distance.

At point B, which is twice as far from the antenna as point
A. the beam intercepts an area of 4 nt . The beam still has a
power of 8W, so the power density at point B is 2 W/nrt
(8/4 = 2). Thus, when we double the distance from the
antenna. we decrease the power density to one-fouth. We can
say, therefore, that the power density in watts per square
meter varies inversely with the square of the distance from the
antenna.

In standard broadcast antennas we are not interested in
power density. Rather we measure signal strength in terms of
field intensity in volts per meter. The field intensity is
proportional to the square root of power density: therefore, the
field intensity varies inversely with the distance, not the
square of the distance, from the antenna.

GAIN AND DIRECTIVITY

Much antenna-design work involves getting an antenna to
radiate more energy into one region than into another. One
measure of this property of an antenna is its gain. This is a
relative term. If we say that an antenna has a certain amount
of gain, we must state some reference. We might, for instance,
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say that an antenna has a gain in a given direction of 2,
referred to a half-wave dipole. This means that the antenna
radiates twice as much power into a region as a half-wave
dipole for the same value of transmitted power.

One reference that is widely used in antenna work is the
isotropic antenna, which radiates uniformly in all directions.
Of course, it is not possible to actually build an isotropic
antenna. No real antenna will radiate equally in all directions.
Nevertheless, the isotropic antenna is a useful reference
because its performance is easy to calculate. Since it is a
fictional device, we avoid the problem of making a standard
antenna that will perform properly.

The field intensity around an antenna is always specified
at some distance from the antenna. In broadcast work this
distance is almost universally chosen as one mile. The formula
for the area of a sphere is

A = 4=7

where r is the radius of the sphere. Thus if we have an
isotropic antenna at the center of a sphere having a radius of
one mile, and if the power radiated was 1 kW, the power
density at the surface of the sphere would be

1000 0.000031 W/n’ = 31 uW/nr
= —m—m—— = ). m = nr
2 47 (1609)° a

Note: There are 1609m in a mile.

Since the wave impedance of free space is 377 ohms, we
have a means of computing the field intensity when we know
the power density. Using a formula that is analogous to the
power formula

Voltage = VpR
we can say that the field intensity in volts per meter is given by

/ watts
E= X 377 ohms

J

meter

= V0.000031 x 377 = 0.1076 V/m
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Thus the field intensity from an isotropic antenna at a distance
of one mile with a radiated power of 1 kW is 107.6 mV/m.

The gain of an antenna is usually expressed as a power
gain. If an antenna has a gain of 2, it will radiate twice as
many watts per square meter into a given region as an
isotropic antenna would. If we want to know the field intensity
at one mile, produced by an antenna that has a gain of 2, with a
radiated power of 1 kW, we must take the square root of the
power gain. Thus

E =107.6 X V2 = 152.2mV/m

Antenna gain is frequently expressed in decibels. The
formula for computing the gain in decibels is

G, =10logps /D

where p is the power density from the antenna under
consideration, and p,, is the power density from the
reference antenna. The same units must be used for p and
P . - Interms of field intensity the gain in decibels is given by

2
- =2OIog—E—

ref - ref

G, = 10log

where E is the field intensity of the antenna under
consideration, and E,,; is the field intensity from the reference

antenna. The same units must be used for E and E,.; .

DETERMINING PATTERN SHAPE

The statement that an antenna has gain suggests that we
can get something for nothing. Of course, this isn’t true. If an
antenna radiates more energy into a region than would be
radiated by an isotropic antenna, it must radiate less energy
into some other region. The measure of how much energy an
antenna radiates into various regions is called the radiation
pattern of the antenna.

The mathematical procedure for computing the radiation
pattern for an antenna of arbitrary shape and size is very
involved. Often the equations cannot be solved, because their
solution depends on an accurate knowledge of the distribution
of charge and current all along the antenna. If the pattern of an
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antenna is known through measurements, the mathematician
can go back and manipulate the equations until they agree
with the measured results. In all but the simplest cases, he
cannot accurately predict the pattern in advance.

Fortunately for the broadcast engineer, it isn’t necessary
to compute the patterns of basic antenna elements. This has
been done many times, and the results are readily available. It
is helpful, however, to know the principles involved, because
they give some insight into the behavior of actual antennas.

Figure 3-11 shows an elementary antenna that is very
short. Mathematically speaking, its length is infinitesimal.
Since the antenna is very short, we can assume that the
current is the same all through it. Of course, such an antenna
is impossible to build, and it wouldn’t be worth trying to
approximate, because its losses would be extremely high. It is
useful to consider, however, because a practical antenna can
be thought of as being made up of a very large number of these
elementary antennas—which are usually called elementary
dipoles—and the contributions of all of them can be added to
find the field from the real antenna.

]_.1 2
!

Fig. 3-11. Elementary infinitesimal dipole.

By just looking at the antenna of Fig. 3-11, we can predict a
few things about it. From an earlier discussion we know that
the electric field is parallel to the antenna, and the magnetic
field is at right angles to the electric field. Thus the maximum
radiation will be broadside to the antenna, toward point A. The
radiation will be zero off the ends of the antenna. It isn't
surprising, then, that the radiation falls off as the cosine of the
angle . What we have no way of knowing—without solving
some rather unpleasant equations—is the actual intensity of
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the'field. Avoiding the unpleasant equations, we find that the
field intensity is given by

60
E= ——]lcos#
dx

where E = field intensity in volts per meter
d = distance from antenna in meters
A = wavelength of signal in meters
= current in amperes
I = length of antenna in meters
= angle from a plane perpendicular to antenna

Strictly speaking, ! should be infinitely small, and we
should use calculus to find the field intensity. Actually, we can
get a valid solution if we assume that [ is small but finite. We
can simplify the equation a little by substituting 1609m for d
and moving A under I. The equation then becomes

!
E = 0.1171—|cos| 8
A

where I/X is the length of our elementary dipole, expressed as
a fraction of a wavelength. Thus, if the dipole is one electrical
degree in length. and the current is one ampere, the field
intensity becomes

1
E=0.117 X 1 X —— = 0.000325 V/m
360

Thus the elementary dipole produces a field intensity of 0.325
mV/m one mile away, along the line broadside to the antenna,
when the current is one ampere.

At the moment we have an expression for field intensity as
a function of the current in the antenna, but we have no way to
relate this to the actual power transmitted. The relationship
involves the resistance seen by the current in the antenna. Our
elementary dipole offers a resistance of 0.0061 ohms to the
current flowing in it. Using Ohm's law, we can find that the
current required for an elementary dipole to radiate 1 kW is

p 1000

I= — = —— =405A
R 0.0061
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Substituting this current into our equation for field intensity
gives

E = 0.325 x 405 = 131.5mV/m

This equation shows that the field intensity from an
elementary dipole has a maximum value of 131.5 mV/m. The
field intensity varies with the cosine of the angle 8 from a line
that is broadside to the axis of the antenna (Fig. 3-12).

‘l ==E=131.5mV/m at 1 mile

Fig. 3-12. Pattern of elementary dipole for 1 kW ot radiated power.

We can use the mathematical tools that we have developed
so far to find the pattern of a half-wave dipole. To do this we
must assume that the half-wave dipole, which is 180° in length,
is made up of 180 elementary dipoles. We can’t simply multiply
the results that we obtained earlier by 180, because the current
is not uniform in the half-wave dipole. For a first
approximation, we can assume that the current on the
half-wave dipole is sinusoidal, being maximum at the center
and zero at each end (Fig. 3-13). We can then break up the
half-wave dipole into 180 elementary dipoles, each carrying
the proper amount of current, and compute the contribution of
each elementary dipole to the field intensity. We can then add
these contributions together to find the field resulting from the
half-wave dipole. The computations are rather lengthy, and we
need not bother with the details here.

CURRENT

Fig. 3-13. Current distribution on
half-wave dipole.

= - |

| A2 —

Figure 3-14 shows the radiation pattern of a half-wave
dipole. It shows that the maximum field intensity at one mile is
137.8 mV/m for 1 kW of radiated power. Note that this and
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other theoretical patterns depend on the current distribution
along the antenna itself. This point is important because there
are many factors that influence the current distribution in
practical antennas. Things such as lines that furnish current
for tower lighting, other conducting structures in the vicinity,
and even the guy wires on a tower will to some extent affect
the current distribution. This effect, in turn, will result in some
deviation of the actual radiation pattern from the computed
theoretical pattern.

0
)\/2| E=137.8 mV/m AT ONE MILE

E=137.8 cos(90sin 6)

cos @

Fig. 3-14. Pattern of half-wave dipole for 1 kW radiated power.

ANTENNA IMPEDANCE

So far we have considered a current flowing in an antenna
without regard as to how it happened to get there. Obviously, if
we are to have a current in an antenna, we must feed energy to
the antenna at some point. At this point, wherever it might be,
we see an impedance. Inasmuch as energy enters the antenna
and doesn’t return, the impedance must have a resistive
component. In addition to the energy that is radiated by the
antenna, some energy is stored in the electric and magnetic
fields in the near zone of the antenna. This means that the
antenna impedance will also have inductive and capacitive
reactive components. The actual amount of resistance and
reactance seen looking into an antenna depends on what part
of the antenna we feed, the physical dimensions of the antenna,
and the frequency of operation.

Figure 3-15A shows a circuit that is a rough equivalent of a
half-wave dipole. At the frequency at which the dipole is
electrically 1/2 wavelength long, the inductive and capacitive
reactances are equal and cancel each other. The equivalent
circuit then becomes that shown in Fig. 3-15B, which consists
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merely of two resistances. One of these resistances (R,)
represents the loss or ohmic resistance of the antenna. Current
flowing in this resistance is dissipated in the form of heat and
is not available for radiation. The other resistance (R, ) is
called the radiation resistance of the antenna. As far as we can
see. looking into the terminals of the antenna, the energy that
is radiated is dissipated in this resistance.

O

Ro R, L

P

1
—

&
(A)
Ro Ry

O—VvVN\——VWVN—
Fig. 3-15. Equivalent circuit of a
half-wave dipole.

(e,

(B)

The total power entering the antenna is given by I? R,
where R = R, + R, . The purpose of the antenna is to release
as much energy as possible through radiation and as little
energy as possible through losses. For this reason the ohmic
resistance R, should be kept as low as possible. There is
usually a minimum value below which it is impractical to
reduce R, . Therefore it is desirable to keep the radiation
resistance high compared with the value of R, . In general,
short antennas tend to have low values of radiation resistance
and, hence, high losses. The half-wave dipole has a radiation
resistance of about 73 ohms, looking into its center.

The voltage and current are not constant throughout the
length of an antenna. In the half-wave dipole the current is
zero at the ends because there is no place for it to go, and it is
maximum at the center. The voltage is just the opposite, being
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maximum at the ends of the antenna and minimum at the
center. Impedance varies inversely with voltage, so it will be
minimum at the center and maximum at the ends. The
numerical value of the impedance varies from about 73 ohms
to about 2500 ohms at the ends. Theoretically, the impedance
at the ends would be infinite if the current actually went to
zero. There is, however, always some capacitive current at the
end of the antenna (end effect.)

At FM and TV frequencies it is often convenient to adjust
the lengths of antenna elements so that they are resonant. This
is usually impractical at standard broadcast frequencies, so
the input impedance of standard broadcast antennas almost
always has a reactive component.

In all broadcast services it is important that the
impedance of the antenna not change significantly over the
bandwidth of the signal. Because of the wider bandwidths
involved, this consideration is most important in TV
broadcasting.

VELOCITY OF PROPAGATION AND ANTENNA LENGTH

The velocity of propagation of electromagnetic waves in
free space is very nearly 300,000,000 meters per second. If the
velocity of a wave on antenna were the same as in free space,
the wavelength on an antenna would be the same as in free
space and would be given by

200.000.000
f

where f is the frequency in hertz, and A is the wavelength in
meters. Like a transmission line, an antenna has inductance
and capacitance, and these tend to retard the velocity of
propagation. The larger the diameter of the antenna, the more
capacitance per unit length. Thus the velocity will be lower in
an antenna of large diameter than in a thin wire. Figure 3-16
shows the amount that the velocity of propagation is reduced
as a function of the circumference in wavelengths.

The fact that 1/2 wavelength is shorter on an antenna than
in free space causes a great deal of confusion. At standard
broadcast frequencies we ignore the actual wavelength on the
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antenna and measure the height in electrical degrees, using
the velocity of propagation in free space as a reference. (The
reason for doing this is shown in Chapter 6.) On the other hand,
FM and TV antennas that are 1/2 wavelength long take the
velocity of propagation into consideration. With transmission
lines, we also specify length in electrical degrees, but here we
do take the velocity of propagation along the line into
consideration.

NEAR AND FAR ZONES

An antenna has an induction field, which is useless as far
as broadcasting is concerned, as well as the radiation field,
which is what we use in broadcasting. Although we have no
interest in the induction field, we must remember that close to
the antenna the induction field is much larger than the

CIRCUMFERENCE
WAVELENGTHS
=
[t
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.001
o 2 4 6 .8 1.0

WAVE VELOCITY
FREE-SPACE VELOCITY

Fig. 3-16. Effect of antenna circumference on wave velocity.
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radiation field. This means that any measurements that we
might make on the radiation field must be made far enough
away from the antenna that the induction field will not
introduce errors.

It is customary to divide the region around an antenna into
two zones—the Fresnel or near zone and the Fraunhoffer or
far zone. The dividing line between the two zones is at a
distance of D' /2\, where D is the largest dimension of the
antenna, and X is the wavelength, both in the same units, At
this distance the induction and radiation fields are equal;
beyond this distance the induction field diminishes with
distance much more rapidly than the radiation field.

For standard broadcast antennas there is another
consideration that limits how close to the antenna site we may
take meaningful measurements. This is because many such
antennas consist of several towers. In our field calculations we
usually consider an antenna as acting as a point source. To
make meaningful measurements, we must be far enough away
from the antenna that it will look electrically like a point
source. This distance is often much greater than the distance
to the far field.
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Chapter 4
Smith Charts

One of the most useful tools for solving antenna and
transmission-line problems is the Smith chart, shown in Fig.
4-1. It can be used to find the standing-wave ratio, reflection
coefficient, and impedances at various points in a feeder
system with a minimum of mathematical calculation. In spite
of its utility the Smith chart is not widely used by broadcast
engineers.

The reason the Smith chart is not more popular is probably
that it looks very complicated. This may be partly because the
scales are circular rather than straight. The fact is, once one
becomes familiar with the various scales, the Smith chart is no
more difficult to use than any other graph. and it saves a
considerable amount of labor. As we see, there are many
advantages to using circular scales, not the least of which is
that any value of impedance can be within the boundary of the
graph.

Smith charts are available from most college book stores.
They are available as either paper graphs or as plastic
calculators with movable scales. The calculator is handy in
applications where many different problems are to be solved.
but the paper graph is fully adequate for broadcast
applications and provides a permanent record of the
computations.
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IMPECANCE OR AOMITTANCE COORDINATES

RADIALLY SCALED PARANETENS

Fig.4-1. The Smith chart, in full detail.

e

Several variations of the Smith chart have been developed
for particular applications. The form used throughout this
book is called the normalized-impedance Smith chart.

NORMALIZED IMPEDANCE

To use the same chart with transmission lines of different
characteristic impedances, we use a normalized impedance.
This is simply a value of impedance that has been divided by
the characteristic impedance of the transmission line we are
using. For example, suppose that we are working with a
system where the transmission line has a characteristic
impedance of 50 ohms—a very common value in broadcasting.
To normalize the impedances in the system, we would simply
divide them by 50 ohms.
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Suppose that we have a load impedance that has been
measured on a bridge and found to be 200 + j150 ohms. To
normalize to 50 ohms, we would merely divide both the
resistive and reactive parts by 50 ohms.

200 150

2= —— 4 je—=4 +j3
50 50

If the impedance was stated in polar form, we would
simply divide the magnitude by 50 ohms, doing nothing to the

phase angle. For example

Z =200 + j150 = 250 , 36.87

z=4+j3=2-§gf3%87=5&5.87

If we had a load impedance that was a pure resistance of 50
ohms. when normalized it would be simply 1.

Note that whereas we use the capital letter Z to designate
an impedance, we use a lowercase z to denote a normalized
impedance. Actually, what we call a normalized ‘‘impedance"”
is not an impedance at all. It is simply a ratio, a pure number
that doesn't have any units such as ohms. When we normalize
an impedance—say, 100 ohms—we divide by so many ohms, as
shown below.

100ohms _ 100
50 ohms ~ 50

Note that the units ohms cancel out in the equation. The
normalized value of impedance is simply 2, not 2 ochms.

This point might be a little confusing at first, but a rather
silly example will make it clear. Suppose that we wish to
compare the numbers of apples in some baskets. If the basket
that we use as a reference contains 50 apples and another
basket contains 100 apples, the ratio of the two is

100 apples

=2

50 apples
and not 2 apples. Similarly, a normalized impedance of 2
simply means that the impedance in question has twice as
many ohms as the value to which we normalized it.
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Fig. 4-2. Resistance axis of Smith chart.

Before we can use a normalized value of impedance to
solve any circuit problems, we must reverse the normalizing
procedure by multiplying by the normalizing value,
(characteristic impedance), which in our example was 50
ohms.

The normalized notation is sometimes called a per unit
notation. In the example 100-ohm impedance has a per-unit
value of 2 when referred to 50 ohms. This means simply that
there are 2 ohms for each ohm in the 50-ohm normalizing
value.

When we normalize an impedance such as 200 + j150
ohms. we get a complex number that is proportional to the
magnitude of the original value and has the same phase angle.

RESISTANCE SCALES

The first line of the Smith chart that we will consider is the
resistance axis (Fig. 4-2). This is the only straight line on the
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entire chart. The center of this line, which is called the prime
center of the chart, is labeled 1.0. It corresponds to a
normalized value of resistance of unity (1). If we had a 50-ohm
pure resistance and were using a 50-ohm transmission line. we
would have a normalized value of 1 and would represent it by
placing a dot at the prime center of the chart.

Below the prime center of the chart are points
corresponding to normalized values of resistance greater than
1. with the bottom of the chart corresponding to infinity. Thus
100 ohms (normalized to 50 ohms) would be represented by a
dot at the point labeled 2.0.

Above the prime center are normalized values less than 1.
A 25-ohm resistance (normalized to 50 ohms) would be
represented by a dot at the point labeled 0.5 on the resistance
axis.

The resistance axis of the Smith chart is one axis of a
graph. just as Y-axis of a rectangular graph is. but in the
Smith chart the scales of the graph are circles rather than
straight lines. The resistance scales are the circles shown in
Fig. 4-3.

A value of normalized resistance is assigned to each
circle. The largest circle. which coincides with the outer edge
of the chart. corresponds to 0: and a dot at the bottom of the
chart corresponds to infinity. Thus any point on the circle
labeled 1.0 corresponds to a normalized-resistance value of 1.

REACTANCE SCALES

The reactance scales. which appear as curved lines in Fig.
4. are actually parts of circles. All of these lines are tangents
to the resistance axis. which itself is the zero-reactance line.
The circle that forms the outer edge of the chart can be
thought of as the reactance axis of the chart.

Each reactance line is assigned a value of normalized
reactance, which is labeled near the outer edge of the chart.
Reactance lines to the right of the resistance axis are used for
positive or inductive reactance, and those to the left of the
resistance axis are used for negative or capacitive reactance.
Thus an inductive reactance of 100 ohms (normalized to 50
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Fig. 4-3. Resistance scales.

ohms) would be represented by a dot on the reactance line
labeled 2.0 on the right side of the chart.

PLOTTING IMPEDANCES

Now that we have a graph with both resistance and
reactance scales, we can plot various values of impedance as
points on the graph. Since the scales of our graph are in
normalized values of impedance, we must normalize each
impedance before we plot it. For the remainder of this chapter
we will assume that we are working with a transmission line
having a characteristic impedance of 50 ohms, and we will
normalize all impedances to this value.

Figure 4-5 shows several impedances plotted on the
coordinates of a Smith chart. The absolute values, normalized
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values. and locations of these impedances are tabulated as:

Absolute Impedance, Normalized Value Point on
Ohms Fig. 4-5.

50 1 A

30 + 7100 1+ j2 B

30 — j100 1-j2 C

100 + 7100 2+ j2 D

100 — j100 2 —j2 E

Two points on the Smith chart are of particular interest in
connection with solving certain transmission-line problems.
The first is the impedance of an ideal short circuit. Here, both
the resistance and the reactance are zero. The value of
impedance is represented by a dot at the top of the chart,
where the resistance and reactance axes intercept (point F in
Fig. 4-5). The other point of particular interest is the
impedance of an ideal open circuit. Here the resistance is
infinite and the reactance is zero. The resistance portion of the

Fig. 4-4. Reactance scales.
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Fig. 4-5. Impedances plotted from table in text.

normalized value is infinity, because an infinitely large
number divided by 50 is still infinitely large. Thus the
impedance of an ideal open circuit is represented by a dot at
the bottom of the chart (point G in Fig. 4-5).

To summarize, any value of normalized impedance can be
plotted on the Smith chart. Pure resistances fall on the
resistance axis, the vertical line through the center of the
chart. Pure reactances fall on the zero-resistance circle,
around the outer edge of the chart. Complex impedances
having both resistance and reactance fall somewhere on the
face of the chart. Impedances having an inductive reactance
lie on the right half of the chart, and those having capacitive
reactance lie on the left half of the chart.

VSWR AND WAVELENGTH SCALES

So far we have shown that any value of impedance can be
plotted on a Smith chart. We haven’t however, justified the use
of circular rather than rectangular scales. We will do this now.
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We saw in Chapter 3 that in a lossless transmission line not
terminated in its characteristic impedance, impedance
measured along the line varies with distance from the load. We
also saw that the impedance repeats itself every 1/2
wavelength along the line. Now we can see one of the
advantages of the choice of coordinates on the Smith chart. All
of the values of impedance measured along a transmission line
will fall on a circle—the VSWR circle—on the chart.

Suppose we have a 50-ohm transmission line that is
terminated in a 100-ohm resistance. Using a formula from
Chapter 2 we find that the standing-wave ratio is

R 100

50
Now, if we draw a circle centered at the prime center of the
chart, with a radius equal to 2 on the resistance axis (see Fig.
4-6). all values of impedance that can be measured along the

Fig. 4-6. AVSWRcircle for VSWR=2.

125



line will fall on this circle. This will hold true as long as the
losses along the line are negligible.

The standing-wave circles are usually not printed on the
chart. They are drawn for individual cases by the user of the
chart. Remember that the radius of the circle is equal to the
numerical value of the VSWR measured on the resistance axis
of the chart.

Looking at the VSWR circle in Fig. 4-6, we see that once we
go around the circle from any point, we are right back to the
impedance with which we started. This corresponds to moving
along a transmission line a distance of 1/2 wavelength. Thus
we can conclude that going around the Smith chart once is
comparable to moving along a transmission line a distance of
1/2 wavelength.

Wavelength scales are provided along the outer edge of the
chart and are marked in decimal fractions of a wavelength.
The outer scale, which increases in a clockwise direction,
represents distance along the line in the direction of the
generator, that is, away from the load. The inner wavelength
scale is marked in decimal fractions of a wavelength toward
the load.

With the scales that we have described, we can find the
impedance at any point along a line, as well as the
standing-wave ratio, if we know the load impedance and the
characteristic impedance of the line. Suppose, for example,
that we have an impedance of 50 + j50 ohms and a 50-ohm
transmission line. The normalized value of load impedance is
thus 1 + j1, which is represented as a dot at point A of Fig. 4-7.
We can then draw a VSWR circle centered about the prime
center of the chart and passing through point A.

We can read the standing-wave ratio directly from the
lower point on the resistance axis (point B), where the VSWR
circle intercepts it. In this case, the VSWR is about 2.6. This
point also corresponds to the impedance at a point about 0.09
wavelength from the load. as shown on the wavelength scale of
the chart.

A careful inspection of the VSWR circle in Fig. 4-7 shows
many interesting things. At points B and C. where the circle
crosses the resistance axis. the reactance is zero. At point C
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the impedance is not only purely resistive, but it has its lowest
value. This point, therefore, must correspond to the point on
the line where the voltage of the standing wave is minimum
and the current is maximum. Point B, which is 1/4 wavelength
from C. corresponds to the point along the line where the
voltage is maximum and the current is minimum.

So far we have only dealt with conditions over a single
half-wavelength of line from the load. Since we are considering
the line to be lossless, we can find the impedance at any point
along the line by merely going around the VSWR circle once
for each half-wavelength of distance from the load.

In practice, this is accomplished by merely subtracting
the largest possible number of half-wavelengths from the line
length. For example, if we have the situation of Fig. 4-7, where
the normalized load impedance is 1 + j1, and we wish to find

Fig. 4-7. All values of impedance along a line, however long, can be found
on the Smith chart.
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the impedance at a point 1 3/4 wavelengths away, we merely
subtract 1 1/2 wavelengths from the total and find the
impedance 1/4 wavelength from the load. This is at point D in
Fig. 4-7. The impedance at point D is 0.5 — j0.5. This is the
reciprocal of the normalized load impedance, which is just
what we would expect, since a quarter-wave line inverts the
load impedance.

Earlier we saw that the input impedance of a lossless
quarter-wave line is given by

Z*
Z, =——
Z,
This equation is based on using absolute values of impedance
in ohms. We can rearrange it to use normalized values of

impedance by dividing both sides by Z; , giving us
Z, _ L* I
L, 4%, 4

If we use a lowercase 2 to represent normalized values. we
have simply

z " = l/zl

and the characteristic impedance of the line cancels out of the
equation completely. This is another convenience that results
from using normalized or per-unit values.

RADIALLY SCALED PARAMETERS

Depending on the type of Smith chart, there are as many
as eight different radial scales (Fig. 4-8). Each of these scales
starts at the prime center of the chart and extends radially
outward. In the Smith chart calculator these scales are printed
on a plastic cursor that is pivoted at the prime center of the
chart. In the printed charts the radial scales are printed along
one side or along the bottom of the chart (Fig. 4-9).

The SWR scale gives the voltage or current standing-wave
ratio (Fig. 4-9). The scale may be used on a lossless
transmission line by drawing a line from the standing-wave
circle to the scale, as shown in Fig. 4-9, or by using a compass
to transfer the distance between the prime center and
standing-wave circle to this scale. The SWR scale is really not
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Fig. 4-8. The radial scales of the Smith chart are located along one edge.
SWR scale is useful for determining SWR on lossy lines. The reflection
coefficient scale, together with the angle of reflection coefficient scale on
the circular chart, is useful for finding the magnitude of the reflected
voltage as a function of the forward voltage, also the angle between the
forward and reflected voltages.
necessary, particularly on lossless lines, because the
standing-wave ratio can be read directly from the resistance
axis below the prime center. The scale is useful in
computations for lossy lines because, as we shall see later. the
SWR curve on the chart is not a circle for such lines.

Opposite the SWR scale, the VSWR is expressed in
decibels. This parameter is sometimes useful. It is the ratio in
decibels of the maximum to minimum voltage or current along

Fig. 4-9. Using the SWR scale.
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atransmission line and is given by

VSWR. dB = 20 1ogE"$

Another radial scale, together with a scale on the chart
which we haven't considered yet, can be used to find both the
magnitude and the angle of the reflection coefficient. Figure
4-10 is for the same load as Fig. 4-7, namely, 1 + j1. The radial
line drawn from the prime center of the chart, through the load
impedance to the peripheral scale labeled angle of reflection
coefficient. shows the angle to be about 63.4°. We can find the
magnitude of the reflection coefficient by measuring the
length of a line from the prime center of the chart to the load
impedance (1 + j1) and transferring the distance to the radial
scale marked reflection coefficient. The reflection coefficient
in this case is about 0.45. This information gives us the
magnitude of the reflected voltage as a function of the forward
voltage, and the angle between the forward and reflected
voltages.

'
.
RN
NT O
P

% i S o R
REFLECT ON COEFFICIE
/7% 7 o

[Baras

L R ]

- G

A
*._ANGLE OF REFLECTION

[ORMACIRSACY
LR SRR i
by Ve
: » 5




Another radial scale on most charts is for the power
reflection coefficient. We shall have no occasion to use this
scale.

LINE LOSSES

So far we have considered that transmission-line losses
are low enough that we can ignore them. In a great deal of
broadcast work, this is entirely practicable. There are cases,
however. where line losses are significant, and radial scales of
the Smith chart provide a way of handling them without many
tedious mathematical considerations.

One effect of transmission-line loss is that the
standing-wave ratio is not constant along the line. In a lossy
line the reflected wave is attentuated as it travels back toward
the sending end, so it will naturally have less effect on the
voltage distribution along the line. Thus the standing-wave

Fig. 4-11. The SWR curve for alossy line.
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ratio becomes smalier in a lossy line as we move closer to the
source. For a lossy line the standing-wave curve is no longer a
circle: it is a curve that starts at the load impedance and
spirals clockwise toward the prime center of the chart, as
shown in Fig. 4-11.

How close the curve comes to the center depends on the
amount of loss in the line. In an extreme case the spiral would
come very close to the prime center of the chart. This would
mean that the loss of the line was so great that the reflected
wave would have no effect on the input impedance, which
would then be equal to the characteristic impedance of the
line.

In practice, it is rather difficult to construct the spiral for
a lossy line on a Smith chart. Fortunately it isn’t necessary.
There is a radial scale, transmission loss, 1 dB steps, that can
be used. This scale (Fig. 4-12) is a relative scale, so the
divisions are not numbered. It is sufficient to know that the
divisions are 1 dB apart.

Assume, for example, that we measure a normalized
impedance of 1.5 + j2 at the terminals of a transmission line of
3/8 wavelength and we know that the loss of the line is 1 dB. We
want to know the VSWR at both the input and load, as well as
the load impedance.

We start out just as we would with a lossless line, by
drawing a VSWR circle through the measured impedance.
This is the inner circle in Fig. 4-12, drawn through point A. We
read the VSWR at this end of the line from point A on the figure
and find it to be about 4.6. Now, to find the VSWR at the load,
we use the radial 1 dB step scale.

Transferring the radius of our VSWR circle to the 1 dB
step scale, we find that the intercept is at about the second
major division from the outer edge of the scale, as shown in the
figure. Since the loss in the line is 1 dB, we move up to the next
major division to form a new radius as shown. With this new
radius, we can draw a new VSWR circle. This new circle,
which passes through the load impedance, shows that the
VSWR at the load is about 9. Inasmuch as the length of the line
is 3/8 wavelength, we can find the load impedance by moving
0.375 wavelength around the new circle toward the load. We
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Fig. 4-12. SWR circles for a lossy line.

thus find that the actual load impedance is about 0.1 + j0.5
{point B).

This technique of drawing two circles to solve a problem is
much easier than drawing a spiral, but remember: Each
circle is valid at only one point along the line, whereas with a
lossless line, one circle applies all along the line.

An inspection of the 1 dB steps scale will provide a great
deal of insight into how losses affect the standing-wave ratio on
a line. If we start at the end of the scale, corresponding to the
prime center of the chart, we see that the 1 dB steps are
spaced very closely. Thus, if the VSWR at the load is small,
even several decibels of loss in the line will not have an
extremely great effect on the VSWR. If the VSWR at the load
was 1.4 and the loss of the line was 3 dB, the VSWR at the input
to the line would be 1.2.

On the other hand, at large distances from the prime
center of the chart, the decibel steps are spaced much farther
apart. Thus, with large values of VSWR, even a small amount
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4-13. The standing-wave ratio is infinite and is represented by a
circle around the outer edge. The impedance at any point
along this line is found by moving clockwise the appropriate
fraction of a wavelength around the circle. Note that the circle
coincides with the zero-resistance circle, which means that as
long as there are no losses in the line (which would cause our
circle to become a spiral), the input impedance will be a pure
reactance. As we move up along this circle, we find that the
input impedance is a high capacitive reactance. This
decreases until—when we reach the top of the chart, which
corresponds to a distance of 1/4 wavelength from the
open-circuited end—we find that the input impedance is a short
circuit. This of course is what we would expect, since we know
that an open quarter-wave line looks like a short circuit.

As we continue around the chart, we see that the input
impedance becomes an inductive reactance, first small in
value, but becoming larger until, when we get to a point 1/2
wavelength along the line, we are right back where we started.
The input impedance is then an open circuit.

If the receiving end of the line was terminated in a short
circuit, we would have the same VSWR circle, corresponding
to an infinite standing-wave ratio, but we would start at point C
of Fig. 4-13 and again move clockwise around the chart to find
the impedance at various points along the line. This
demonstrates that a shorted line behaves the same as an open
line except that the same conditions are displaced by a 1/4
wavelength along the line.

These examples show how familiarity with a Smith chart
reinforces a knowledge of transmission-line principles and
simplifies computations.

GETTING IN AND OUT OF THE CHART

We have looked over each of the scales on the Smith chart
and seen how it relates the load impedance, impedance along a
line, reflection coefficient and standing-wave ratio. Never-
theless. there are still a lot of lines on the chart, and until one
has had quite a bit of practice, the chart is apt to be confusing.
It is helpful to use some systematic method of plotting points
on the chart and reading the desired results.
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The way we enter a number on the Smith chart depends, of
course, on the type of quantity. An impedance isn’t entered on
the chart in the same way as the angle of a reflection
coefficient, for example. When we use the Smith chart, we
know some quantities and use the chart to find others. The
quantities that we start with come from either basic design
considerations or from measurements that we can make.

There are several different types of instruments for
measuring transmission-line parameters. The particular
measurement that is made depends on the availability of
instruments and the application. For example, in the standard
broadcast band, we frequently measure impedances on a
bridge, whereas, in an FM or TV station, we might measure
the reflection on a line. The beauty of the Smith chart is that it
relates all of the transmission-line parameters.

One parameter that fortunately is nearly always known in
advance is the characteristic impedance of the transmission
line. This means that normalizing any particular value of
impedance is simply a matter of division.

Frequently the quantity we start with is the value of an
impedance. Using lowercase letters to represent normalized
values of resistance, reactance, and impedance, we can
express our number in the form z =r + jz. Suppose, for
example, that it happens to be 1.4 + j2. To enter this value on
the Smith chart, we start with the resistance. Since the top of
the resistance axis appears at the top of the chart, we start
there. Starting at point A in Fig. 4-14, we move down the
resistance axis until we find the circle corresponding to 1.4.
This is at point B. We know that the value we want to plot lies
somewhere on this circle. To find out which way to go along
this circle, we look at the sign of the reactance in the
impedance we are plotting. In our example the sign is positive.
This means that the impedance lies on the right half of the
chart, so we move to the right along the 1.4 resistance circle
until we come to the 2.0 reactance circle, point C in the figure.
This procedure probably isn't necessary for one who is
thoroughly familiar with the chart, but it is convenient and
reduces the probability of error.

If the impedance that we have just plotted is either a load
impedance, or the impedance measured at some point along a
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Fig. 4-14. Plotting data on the Smith chart.

line that we can consider lossless, we can then determine
many of the other parameters. We can construct a
standing-wave circle and read off the VSWR. If it is a load
impedance. we can also read off the magnitude and angle of
the reflection coefficient.

If the plotted impedance is the value measured at some
point along the line, we need one more piece of information
before we can find the value of the load impedance: either the
distance in wavelengths from the point of measurement to the
load, or the angle of the reflection coefficient. If we know that
the load is a pure resistance but don’t know what the value is,
we can narrow it down to two values. A pure resistance would
have to fall on the resistance axis, so its value is that at either
point D or point E in Fig. 4-14.

If one of the quantities that we know to start with is the
standing-wave ratio, we can start by plotting the VSWR circle.
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This then tells us all possible values of impedance along the
line, but it doesn't tell us where they occur. We know that both
the load impedance and input impedance are on this circle, but
we must have more information before we can find anything
more specific. In laboratory-type measurements with a slotted
line, we can often find the distance in wavelength from the load
to the first maximum or minimum of the standing wave. Since
we know that the maximum and minimum of the standing
wave occur where the VSWR circle crosses the resistance
axis, we can use the wavelength scales to find the value of the
load impedance.

ADMITTANCE PARAMETERS

Admittance, conductance, and susceptance are much less
familiar concepts than impedance, resistance, and reactance,
but no more difficult inherently. Admittance and related
parameters were explained in Chapter 1. Admittance is
reintroduced at this point for two reasons:

1. There are situations in antenna and transmission-line
work where using admittance rather than impedance
considerably simplifies computations.

2. The Smith chart greatly simplifies conversion from
impedance to admittance, and vice versa.

ADMITTANCE AND THE SMITH CHART

If the admittance concept seems fearsome, the Smith
chart will come to the rescue. First let us use the chart to find
a value of admittance corresponding to a given value of
impedance. To keep things simple, let's find the admittance
corresponding to a resistance of 100 chms. Normalizing this to
50 ohms gives us a value of 2.0, which we represent by a dot at
point A of Fig. 4-15.

Now, we know that the normalized impedance seen looking
into a quarter-wave transmission line is equal to the reciprocal
of the normalized load impedance. We also know that this
reciprocal is equal to the normalized load admittance. So all
we have to do is go around the chart 180°, which corresponds to
moving along a transmission line 1/4 wavelength, and read 0.5
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Fig. 4-17. Expanded-scale Smith chart.

from zero to infinity can be plotted on the Smith chart. One of
the penalties we pay for this convenience is an inherent
inaccuracy in reading the chart. This isn’t very significant
when the mismatch and hence the standing-wave ratio is high.
It is annoying in a closely matched system, where the
standing-wave ratio is held to close limits. For such cases,
expanded charts are available, as shown in Fig. 4-17. Here the
area near the prime center of the regular chart is expanded to
cover the entire area of the regular chart. The scales are
expanded radially about the prime center by a ratio of 4.42:1.
On this expanded chart the magnitude of the reflection
coefficients from 0 to 1/4.42 can be displayed, whereas, on the
full chart, all possible values of reflection coefficient from 0 to
1 can be plotted. The maximum standing-wave ratio that can
be plotted without going off the edge of the expanded chart is
1.59, which, in decibel notation, is 4 dB.

The expanded chart is excellent for plotting trans-
mission line and load-impedance characteristics in systems
where the standing-wave ratio does not exceed 1.59.
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Smith charts with other degrees of expansion are
available. In fact, a wide variety of special charts have been
made at different times for particular applications. The two
that have been described here are the ones most commonly
used for broadcast work.

USING THE SMITH CHART

Although the main body of the Smith chart has only two
sets of scales, for resistance and reactance, it can be used for
many different purposes.

Analyzing Networks

The Smith chart can be used for analyzing networks
because it provides an easy way of converting between
impedances and admittances. Combining admittances in
parallel is simply a matter of addition, the same as combining
impedances in series. Figure 4-18A shows an L-network of the
type used to match impedances in antenna systems. To
analyze this network on a Smith chart, we must first normalize
all of the impedances, preferably to the value of the
characteristic impedance of the transmission line—in this
case, 50 ohms. The normalized impedances are shown in Fig.
4-18B. We can now add the impedances and admittances of the
network directly on a Smith chart.

j25 j0.5

T—jSO 25 T -1 0.5
(o g ! O *

(A) (B)
Fig. 4-18. An L-Network, with actual and normalized impedances.

The impedance of the load is a normalized resistance of
0.5. Therefore we enter the Smith chart from the top and go to
point A in Fig. 4-19A, which represents a normalized
impedance of 0.5. Next we add the series reactance of +j0.5.
This means moving along the 0.5 resistance circle to point B.
The next element that we wish to consider is the capacitor.
Inasmuch as the capacitor is connected in parallel with the
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Reading the chart as an admittance chart, we see that the
admittance at point C, which is the admittance of the resistor
and inductor in series, is 1 — jl. We want to add the
susceptance of the capacitor to this value of admittance. The
susceptance of the capacitor is the reciprocal of its reactance.
Since the normalized reactance in this example is — jl, the
normalized susceptance will be +jl. We can add this
susceptance by moving clockwise along the 1.0 conductance
scale to point D. Here we see that the normalized admittance
is simply 1.0. Converting from normalized values of
admittance to absolute values, we must multiply by 0.02 mho,
the reciprocal of 50 ohms. Thus the impedance seen looking
into the network of Fig. 4-18 is 50 ohms.

At first the above procedure looks like a lot of work to get a
simple answer. It is a rather lengthy procedure until one
becomes familiar with it; then it is not only easy, but it gives
increasing insight into network behavior.

Figure 4-20 shows another network that we may need to
analyze. In this case, the resistor is connected in parallel with
a capacitor, so we use conductance and susceptance values of
these two elements, then convert to impedance to handle the
series inductor. In Fig. 4-20B the resistance and reactances
are normalized to 50 ohms. In Fig. 4-20C the resistive and

j100 +j2

T—nzs

(A) (B) NORMALIZED IMPEDANCES

IMPEDANCE
——" 55— ADMITTANCE
+j2 ——

Tjo.4

~@-

{C) IMPEDANCE AND ADMITTANCE
Fig. 4-20. The L-network referred to in the test.

250

0.2
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that the impedance seen looking into the network of Fig. 4-19A
is 50 ohms.

Analyzing Data

Another very useful application of the Smith chart is in
analyzing data from measurements. For example, suppose we
have a transmission line that is 1/4 wavelength long at some
frequency and is terminated in a given impedance. If we vary
the frequency, the line will no longer be 1/4 wavelength long,
and the driving-point impedance of the line will vary. We can
use the Smith chart to show not only the driving-point
impedance of the line but also how the standing-wave ratio
varies with frequency.

Suppose, for example, that the 50-ohm transmission line
shown in Fig. 4-22 is a quarter-wave line and is terminated by a
100-ohm resistor. Assume that we want to know the input
impedance looking into the line at the frequency f, , at which
the line is a 1/4 wavelength long, and at two other frequencies,
f and f, . which are 10% lower and higher in frequency.
respectively. First we normalize the 100 ohms to 50 ohms,
giving a normalized resistance of 2.0.

Zn—>  Zp=500HMS 100

e M4ATfg —|

f
fi= 0 f.=1.1f
S n 0
Fig. 4-22. Transmission-line problem.

We enter the Smith chart of Fig. 4-23 at this value, point A.
To find the impedance at the sending end of the quarter-wave
section, we merely move at a constant distance from the prime
center of the chart, through 180°. Remember that 180° on the
chart corresponds to 90° on the line itself. This brings us to
point B, where we see that the normalized input impedance of
the line is 0.5. At the frequency f, . which is 109 lower than f ,
the line length will be 10% shorter than 1/4 wavelength. This is
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above and below the center frequency. At the lower frequency
the impedance has a slight capacitive component, and at the
higher frequency it has a small inductive component.
Interestingly, the standing-wave ratio will not change at all
with frequency. All of the impedances lie on the same VSWR
circle.

Other uses of the Smith chart include plotting the results of
measurements of various instruments so that we can find
other parameters. For example, if an instrument gives us the
magnitude and angle of the reflection coefficient, we can
easily find the impedance or admittance.

Plotting Antenna Impedances

In an earlier example we saw that the standing-wave ratio
on a transmission line does not vary with frequency as long as
the load impedance remains constant. Unfortunately the
impedance of most types of antennas does not remain constant
as frequency is changed. Hence one of the factors that must be
considered when evaluating the bandwidth of an antenna is the
standing-wave ratio on the transmission line and how much it
varies as the frequency and load are changed. One easy way to
evaluate a situation of this type is to plot antenna impedance
as a function of frequency on a Smith chart. The stand-
ing-wave ratio that occurs at any frequency can be read by
simply drawing a VSWR circle through the impedance at that
particular frequency.

Suppose that at the terminals of an antenna we measured
the driving-point impedance with an impedance bridge and
found the following values at different frequencies:

Frequency, Normalized
Resistance Reactance kHz Impedance
980 47 —j12 0.94 — j0.24
990 47 —jb 0.94 — j0.12
1000 50 0 1.0 + j0
1010 33 +j4 1.06 + j0.08
1020 57 +j6 1.14 + j0.12

Here we want to know the VSWR at the various frequencies.
Plotting the impedances on a Smith chart, we get the plot
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Chapter 5

Standard
Broadcast Antennas

e e Y T TPy e P W TYTWEXIREN,
The history of AM broadcasting in the United States closely
parallels the history of broadcast antennas. In the early days
of broadcasting, the coverage of a station was determined
almost entirely by the transmitter power. At first it looked as
if the broadcast band was to be nothing but the scene of a
power race, with a few extremely high-powered stations
dominating the band. Broadcasting as we know it today is the
result of developments in antennas.

The AM broadcast band—or standard broadcast band, as
itis called in the FCC Rules—consists of 107 channels, between
335 and 1605 kHz. Carrier frequencies in this band are spaced
at 10 kHz intervals. Stations are allocated these carrier
frequencies in accordance with a system that allows service to
almost every section of the country with a minimum of
interference between stations. The allocation methods depend
heavily on the use of directional antennas.

The history of the directional antenna as applied to AM
broadcasting is interesting. To fully appreciate it, one must
have some idea of the pandemonium that once prevailed on the
broadcast band.

It isn’t easy to tell just when the first commercial
broadcast station went on the air. The first license to
broadcast on a regular basis was issued in 1921 to WBZ, then
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located in Springfield, Massachusetts. However, many
broadcast stations were operating on an experimental basis
long before then. Certainly station KDKA in Pittsburgh,
Pennsylvania, was one of the earliest,

By 1923 several hundred stations were on the air. At that
time only two frequencies, 750 and 833 kHz, were allocated for
broadcasting. and the interference was as severe as any of the
pileups”’ found on crowded ham bands today. Late in 1924, 96
channels, between 550 and 1500 kHz, were set aside for
broadcasting, and stations were assigned to particular
channels. The earliest attempt to minimize inteference was to
assign the same carrier frequencies to stations that were
geographically as far apart as possible and, when necessary,
to require them to share broadcast time. Old-timers will
remember when radio-program listings in the newspapers
carried the notation ‘‘silent night,” indicating that a station
would not broadcast on a particular night. The situation was
far from satisfactory. but was the best that it could be with the
state of the art at that time,

The breakthrough that made broadcasting as we know it
today possible was the development in 1921 of the AM
directional antenna by Dr. Raymond M. Willmotte and
Commander T. A. M. Craven, later an FCC Commissioner.
The situation that led to the development involved a case of
interference to signals from WTMJ in Milwaukee from
WFLA-WSUN in Clearwater, Florida. Both stations operated
on a carrier frequency of 620 kHz. A battle ensued, with MTMJ
trying to force the Florida station off the air. Some idea of the
state of knowledge of propagation at the time can be gathered
from the fact that one theory advanced to explain the
interference was that the signal from the Florida station
traveled across the Gulf of Mexico and then up the Mississippi
river valley to Milwaukee—even though this isn't a direct
path.

At the time, few broadcast engineers felt that the null from
a directional-antenna system could be used to protect the
service area of another station from interference. Dr.
Willmotte believed that it could, and proceeded to prove it,
thus starting the use of directional antennas in broadcasting.
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The first AM directional array consisted of two guyed
vertical towers. spaced 90° apart and fed through networks
that were adjusted without the aid of modern impedance
bridges. The results surprised not only the government
inspectors but the developers themselves. Dr. Wilmotte
reported that when the antenna was adjusted for minimum
radiation in the direction of Milwaukee, the radio inspector at
Atlanta, Georgia, which is in a direct line between the Florida
and Wisconsin cities, wanted to know why the station was off
the air without permission.

The directional-antenna system, which is now a familiar
sight across the country, became an essential part of the
answer to problems of interference between broadcast
stations. The allocation of frequencies to broadcast stations
depends heavily on its use.

SERVICE AREAS AND CLASSES OF CHANNELS

The FCC recognizes three different types of service area
of standard broadcast stations. The primary service area is
the area where the groundwave from the transmitting antenna
is not subject to objectionable fading. The secondary service
area is the area served by the skywave from the antenna,
where there is no objectionable interference. Skywave signals
in the secondary service area are, however, subject to fading.
The intermittent service area lies between the primary and
secondary service area. It is the area where the groundwave is
received but is subject to fading. Interference may also be
present in the intermittent service area.

Three classes of broadcast channels have been established
in North America. A clear channel. in spite of its name. is not a
channel that has only one station assigned to it. It is a channel
on which one or more high-powered stations serve wide areas.
All of the primary service areas of these stations, and all or a
substantial portion of their secondary service areas, are
cleared of objectionable interference.

A regional channel is one on which several stations with
powers of not more than 5 kW operate. Interference between
stations is controlled by limiting the contours of their primary
service areas.
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A local channel is one on which several low-powered
stations provide service to local communities. Stations
operating on local channels operate with a power of not more
than 1 kW in the daytime and 250W at nighttime. The primary
service areas of these stations are limited by interference
considerations.

TIMES OF OPERATION

There are several definitions of times of operation of
broadcast stations that must be clarified. Daytime and
nighttime refer to the time between local sunrise and local
sunset, and vice versa, but local sunrise is not the time that the
sun appears over the horizon. Rather the official time of local
sunrise, as far as operating rules are concerned, is specified in
the station license for each month of the year (and similarly
for local sunset).

The broadcast day is not the same as daytime. It is the
period of time between local sunrise, as specified in the station
license, and midnight local time.

The experimental period is the time period between
midnight local time and local sunrise as specified in the station
license. During this period any standard broadcast station can
broadcast experimentally for purposes of testing and
maintenance. The authorized frequency and power may be
used for these purposes. However, these experimental
broadcasts must not cause objectionable interference to
stations that maintain a regular program schedule during this
period. No station that is unauthorized to do so may broadcast
programs during the experimental period.

STANDARDS OF ALLOCATION

Coverage of the entire country with standard broadcast
signals is possible only because of a rather complex system of
frequency allocation. Many different broadcast stations
operate on the same frequency, and interference between
stations is held to a minimum by specifying the maximum and
minimum field strength that a particular station can radiate to
any particular area. This control is accomplished by limiting
the transmitter power and shaping the antenna pattern of each
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station. The transmitter powers allocated to standard
broadcast stations are: 250W, 500W, 1 kW, 2.5 kW, 10 kW, 25
kW. and 50 kW.

For purposes of allocation, stations are divided into four
classes and several subclasses. The class of station,
authorized operating power, and type of antenna pattern are
based not only on the broadcast requirements of the United
States but also on international agreements with Canada and
Mexico. The object is to provide good broadcast coverage to
all areas, while minimizing interference between stations.

Class I stations are dominant stations that operate on
clear channels, usually with an operating power of 50 kW, and
never less than 10 kW. These stations provide primary and
secondary service over a wide area and at long distances from
the station. Their primary service areas are cleared of
objectionable interference, both on their operating frequency
and on adjacent channels. Their secondary service areas are
cleared of objectionable interference on their operating
frequencies, but not on adjacent channels.

The United States has class I priority on 45 clear channels.
Canada and Mexico have their own class I priorities, some of
which are shared with the United States. Only one or two class
I stations operate on each clear channel.

A class II station is a secondary station operating on a
clear channel with an operating power of between 250W and 50
kW. Class II stations serve population centers and the adjacent
rural areas. They are operated so as not to cause interference
with the service areas of dominant stations operating on the
same clear channel. There are 29 clear channels on which
class II stations may operate.

Class 11l stations share regional channels with several
similar stations. each serving a population center and the
surrounding rural areas. Class III stations operate with a
power of between 500W and 5 kW. There are 41 regional
channels, with more than 2000 class III stations.

A class IV station operates on a local channel to provide
service to a local area. The operating power is not more than 1
kW during the day and 250W at night. There are six local
channels. with 150 or more class IV stations on each channel.
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PATTERNS, CONTOURS, AND FIELD INTENSITY

To provide primary service to an area, a station must
provide a signal that is strong enough to overcome the
manmade noise that might be encountered in the area. The
FCC Rules specify the following minimum field intensities for
various types of service areas:

Area Groundwave Field Intensity
City business or factory areas 10to 50 mV/m
City residential areas 2t010mV/m
Rural—all areas during 0.1t00.5mV/m
winter, northern areas during summer

Southern areas during summer 0.25t01.0mV/m

These values are based on the absence of fading and
interference from other broadcast stations. No real standards
of atmospheric or manmade noise have been established,
because no uniform measurements are available. The FCC
has, however, published a list of signal strengths that are
considered satisfactory for overcoming manmade noise in
towns of various sizes. The field intensities are:

Population Groundwave Field Intensity
Up to 2500 0.5mV/m
2500 to 10,000 2.0mV/m

10,000 and up Values giveninthe preceding paragraph

In addition to the requirement for providing adequate field
intensity in its service areas, a broadcast station must not
radiate interfering signals into the service areas of other
stations. This spatial distribution of the signals from broadcast
stations is controlled by the design of the antenna system. To
specify the field intensity in various directions from an
antenna, we need some method of describing how the field
intensity varies from one direction to another. This
information may be tabulated or given in the form of a graph.
Two types of graphs are commonly used to specify the
directional characteristics of broadcast antennas—antenna
patterns and field-intensity contours. The two look very much
alike and should not be confused.
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Antenna Pattern

First let’s look at the antenna pattern. To simplify things,
we will assume that the antenna is located over a flat,
perfectly conducting earth. Suppose that an engineer takes a
field-intensity meter and walks around the antenna at some
fixed radial distance, say, one mile and as he walks, he
periodically reads the field-intensity meter and records its
indication. After walking completely around the antenna, he
might have a series of measurements as shown in Fig. 5-1.

This information can be used to plot an antenna pattern on
a circular chart, with the radial distance from the center

BEARING FROMNORTH, FIELD INTENSITY, BEARING FROMNORTH, FIELDINTENSITY.

DEGREES mv/m DEGREES mvim
0 500 120 480
15 504 135 460
30 510 150 275
45 498 165 390
60 500 180 485
75 502 195 4938
90 509 210 502
105 501 225 510
BEARING FROMNORTH, FIELD INTENSITY.
DEGREES mV/m

240 502

255 500

270 501

285 487

300 475

315 430

330 465

345 502

mv/m

_/

Fig. 5-1. Antenna pattern for data shown.
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representing field intensity and the angular scale indicating
the bearing at which each measurement was made, as in Fig.
5-1. This particular plot would be the pattern of our antenna at
a distance of one mile. If the power of the transmitter was
increased. the entire pattern would expand, but the shape
would be the same. If the transmitter power was reduced. the
entire pattern would shrink, but again the shape would not
change. It is customary, when plotting a pattern, to specify the
power that is being transmitted.

Although this example illustrates the meaning of an
antenna pattern, the assumption was made that the earth in
the vicinity of the antenna was a perfect conductor. In the real
world this is not true, and we could not determine the actual
field intensity at one mile from an antenna by this method. We
shall consider the proper method of doing this later.

The portions of the pattern where the signal is strong are
called lobes of the pattern. If there is one predominating lobe,
it is usually called the major lobe. Smaller lobes are called
minor lobes. Those portions of the pattern where the signal is
reduced are called nulls, or minima. Strictly speaking, the
term null refers to portions where the signal strength
approaches zero and minima refers to those places where it is
merely reduced. However, the use of the term null to refer to a
bearing where the signal strength is reduced is so widespread
that we follow the practice in this book.

Field-Intensity Contour

Another way to describe the directional characteristics of
an antenna is to plot a field-intensity contour. Suppose once
again that a broadcast engineer, equipped with a
field-intensity meter, sets out to measure the directional
characteristics of his antenna. Once again he walks
completely around the antenna, but this time he does not
maintain a constant radial distance from the antenna. Instead,
he walks toward or away from the antenna until he obtains a
certain indication on his field-intensity meter, say, 1 V/m.
Suppose that each time he makes a measurement, he records
the angular bearing from true north and the radial distance
from the antenna at which the indication of the field-intensity
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meter is 1 V/m. His measurement record would then appear as
in Fig. 5-2.

Now, if he plotted this information on a circular graph, he
would obtain the graph shown in Fig. 5-2. This plot is called the
one-volt-per-meter contour of the antenna. Here again, if the
transmitter power was increased, the contour would expand,
but its shape would not change. Likewise, if the transmitter
power was reduced, the contour would shrink without
changing shape. To be meaningful, the contour should also
specify the transmitter power.

The contour is important in that the service area of a
station is protected to a minimum signal contour against
interference from other stations. Another use of the contour is
in assigning responsibility for cases of interference to
listeners’ receivers. The FCC Rules provide that any standard

BEARING FROMNORTH. DISTANCE FROM BEARING FROMNQORTH. DISTANCE FROM

(DEGREES) ANTENNA MILES (DEGREES) ANTENNA. MILES
0 032 120 030
20 033 140 028
40 034 160 022
60 03 180 020
80 028 200 022
100 029 220 020
BEARING FROMNORTH. DISTANCE FROM
(DEGREES) ANTENNA MILES
240 020
260 020
280 025
30C 026
320 026
340 029
N
1Vm CONTOUR

01 Jo2 fJo3 Joa Tos
MILES

Fig. 5-2. Field-intensity contour.
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broadcast station is responsible for adjusting all cases of
interference to listeners within its one-volt-per-meter contour.

We have now seen examples of both patterns and contours.
They are two different ways of describing the directional
characteristics of antennas. The pattern is a plot of field
intensity at a fixed distance from the antenna at various
angles. The contour is a plot of the distance from the antenna
to a point of given field intensity at various angles. The
distinction should be kept clearly in mind.

Vertical Pattern

The signal serving the primary service area of a station is
propagated along the surface of the earth and is called the
groundwave. It is specified in terms of a pattern calculated
along the surface of the earth. Signals are also propagated by
the skywave, which is reflected from the ionosphere back to
the earth. Skywave propagation provides coverage to sec-
ondary service areas of some stations and is a potential source
of interference to other co-channel and adjacent-channel
stations.

The amount of signal that an antenna radiates at various
angles above the horizon is specified by the vertical-radiation
pattern. The vertical pattern, like the horizontal pattern, is
usually plotted on polar graph paper. The radial scale is
calibrated in field intensity, usually at a distance of one mile
from the antenna. The angular scale is simply the angle from
the horizon. Figure 5-3 shows the vertical-radiation pattern of

0

Fig. 5-3. Vertical-radiation pattern
for vertical antenna(only one side
of pattern is shown).

0

T 1

T T T 1
40 80 100 120 160 200
mV/m
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a vertical antenna that is 1/4 wavelength in height. Note that
the radiation is greatest along the surface of the earth but that
there is still appreciable radiation at higher elevation angles.
Usually. radiation above 60° is small, and not subject to
propagation over long paths. It is the radiation at elevation
angles below 60° that is responsible for both coverage to
secondary service areas and interference to other stations.

TYPICAL STANDARD BROADCAST ANTENNAS

There are two types of antenna systems used in standard
broadcast stations: nondirectional antennas, which consist of
a single vertical tower, and directional antenna arrays, which
have two or more towers.

A nondirectional antenna consists essentially of a vertical
tower, which radiates the signal: a network, which matches
the impedance of the antenna to the characteristic impedance
of the transmission line: and the transmission line itself. A
typical system is shown in Fig. 54. Most broadcast
transmitters are designed to work into the characteristic
impedance of a transmission line, so no matching network is
required between the transmitter and the line.

TRANSMISSION
LINE

ooao ” U j"DOGHOUSE"

TOWER

TRANSMITTER
Fig. 5-4. A typical nondirectional antenna system for AM broadcasting.

Accessories

The driving-point impedance seen at the base of a tower is
never the same as the characteristic impedance of a
transmission line. Thus a matching network is required. This
network is located close to the base of the tower in a shelter
that is commonly known as a *‘doghouse.”” Sometimes this unit
is called a line-tuning unit, or LTU. In a nondirectional antenna
the phase of the current feeding the antenna is not important,
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so the phase characteristics of the matching network are not
critical. About the only critical requirements of the matching
network are low losses and a bandwidth adequate to transmit
all of the sideband power.

The transmission line is almost always a coaxial cable. A
few open-wire lines are extant, but these are rapidly being
replaced by coaxial cables. The requirements for the cable are
low losses and adequate power rating to handle the licensed
transmitter power.

Besides the essential elements of the antenna and feeder,
certain accessories are required. One of these is a
tower-lighting system. The FCC and FAA rules require that all
broadcast towers be lighted at night. If a tower is shunt fed, as
in Fig. 5-5A, there is no problem; the lighting wires are simply
run up along the side of the tower. Unfortunately, shunt
feeding of broadcast towers poses some problems, and it is not
commonly used. The usual broadcast-antenna tower has a
base insulator (Fig. 5-5B), and the base of the tower is not at
ground potential. If the wires carrying power to the tower
lights in B were run as in A, they would effectively
short-circuit the signal at the base of the tower. It is necessary,
therefore, to run the lighting power through some sort of

—BEACON
0—SIDELIGHTS
SHUNT
FEED
LIGHTING
—
CHOKES é RF FEED
=3 FLASHER|?°T— §= | ¥ insuLaTOR
TO COMMERCIAL TO
POWER (A) COMMERCIAL (8)

POWER

Fig. 5-5. Tower lighting arrangements for shunt- and series-fed AM anten-
nas.
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arrangement that will present a low impedance to the 60 Hz
power but a high impedance to the RF signal.

A typical solution is to include isolation chokes, as shown
in Fig. 5-5B. Another solution is the Austin transformer (Fig.
56). The two coils of this transformer are magnetically
coupled so that the 60 Hz power will pass between them. They
are physically separated by a great enough distance that the
capacitive coupling between the primary and secondary will
be small, and little signal power will be coupled through the
transformer.

TO TOWER
LIGHTS

TOPOWER LINE

Fig. 5-6. Austin transformer for tower lighting.

Another essential part of the antenna system is a
lightning-protection device. This usually takes the form of an
air gap that will break down when the tower becomes charged.

Parts of the Directional Antenna

A directional-antenna system contains everything that is
in the nondirectional antenna, and more. Figure 5-7 shows a
block diagram of a 3-tower directional-antenna system. As in
the nondirectional antenna, it is necessary to match the
driving-point impedance at the base of each tower to the
characteristic impedance of the transmission line. But in the
directional antenna the relative phase of the current fed to
each tower is critical. so an additional requirement is imposed
on the matching network. It must not only perform the
required impedance transformation, but it must do so with a
predetermined amount of phase shift.

At the sending end of the transmission lines feeding each
of the towers. the signal must be divided so that each tower
carries the proper percentage of the total current at the proper
phase. Controls are provided to adjust the magnitude and
phase of each of the tower currents. The equipment used for
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IMPEDANCE;
S:T:‘I'S:R MATCHING
— NETWORKS| TOWER !
FROM
TRANSMITTER PHASE
POWER| | S
COMMON |[DIVIDER SHIFTER
POINT
COAXIAL
PHASE LINES
SHIFTER
IMP&DANCE/E
MATCHING |TOWER 2
' IMPEDANCE]
Fig. 5-7. Block diagram of direc- MATCHING [TOWER 3
tional-antenna system.

this purpose consists of phase-shifting networks and power
dividers. This equipment is usually referred to collectively as
the phasor.

The point in the system just before the power from the
transmitter branches out is called the common point of the
system. Here the impedance and current are measured to
determine the power radiated by the system.

One subsystem of a directional-antenna system that is not
used in a nondirectional antenna is the antenna-monitoring
system, formerly called the phase-monitoring system. This
system is used to measure the amplitude and phase of the
currents in each of the antenna towers to ensure that the
pattern stays within its licensed limits. Small samples of the
tower currents are picked up by sampling loops mounted on
the side of each tower. The signals from the loops are carried
back to the transmitter building, through coaxial cables to the
antenna monitor (formerly called the phase monitor). The
antenna monitor indicates the ratios of the currents in the
various towers of the array, as well as their phase angles.

In general. the power delivered by the transmitter to the
antenna system is given by the equation

P=I"R
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where P = power from transmitter
R = resistance measured at common point of system
I = unmodulated RF current measured at common
point

To make an allowance for the additional losses that are
unavoidable in a directional-antenna system, the FCC Rules
state that the power shall be determined from the relationship

P=1%Ra

where the constant a equals 0.92 in stations where the licensed
power is 5 kW or less, or 0.947 where the licensed power is over
SkW.

Another important part of a broadcast-antenna system is
the current-measuring system. The rules require that the
current at the base of each tower be measured at regular
intervals. This measurement is made by a thermocouple
ammeter, called the base-current ammeter. To protect the
meter from damage that might be caused by lightning surges,
it is usually switched out of the circuit except when
measurements are actually being made.

PROPAGATION OF STANDARD BROADCAST SIGNALS

At the’ frequencies used for standard AM broadcasting,
there are two primary modes of signal propaga-
tion—groundwave and skywave propagation. During daylight,
propagation is entirely by means of the groundwave. It is this
mode of propagation that provides coverage of the primary
service area of the station. Starting about local sunset, signals
begin to be propagated by the skywave. In this mode, signals
are reflected from the ionosphere back toward the earth.
Skywave propagation provides coverage of the secondary
service area of a station, if the station has such coverage. It
may also cause interference to adjacent channel or cochannel
stations.

Figure 5-8 illustrates both modes of propagation. Part A
shows that the groundwave is strongest close to the antenna
and falls off with distance. If the ground were a perfect
conductor, the signal level would decrease linearly with
distance from the antenna: but because the ground is not a
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Fig. 5-8. Groundwave and skywave propagation.

perfect conductor, the signal actually falls off more rapidly.
During the daylight hours, when there is no skywave, the
groundwave signal can be received until it is buried in the
noise. At night, when the skywave signal appears, it is greater
than the groundwave signal at a distance considerably less
than the daytime range of the station.

When the groundwave and skywave signals are nearly the
same strength, they alternately reinforce and cancel each
other, leading to serious fading of the signal at the receiver.
The area where this occurs is called the intermittent service
area (Fig. 5-8B). The point where fading starts to become
objectionable—at the so-called fading wall—marks the outer
edge of the primary service area. One of the major
considerations in broadcast-antenna design is to push back the
fading wall. This is done by confining as much of the radiation
as practicable to low elevation angles so as to reduce skywave
radiation.
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Chapter 6
Vertical Antennas

The vertical antenna is the exclusive radiating element in
standard broadcasting. It is well suited to broadcast use. The
vertical antenna’s radiation is uniform along the surface of the
earth, and because of its low angle of radiation. most of the
energy is concentrated in the groundwave, which provides
primary service. The slightness of radiation at high vertical
angles minimizes skywave interference between stations at
night.

The vertically polarized signal from a vertical antenna
suffers much less loss from low ground conductivity than a
horizontally polarized signal does. This increases the area of
groundwave coverage. Vertical antennas are also well suited
for use as elements of directional antennas for standard
broadcasting. Since a vertical antenna operating alone has a
circular pattern in the horizontal plane, the design of arrays
that must produce complex patterns is simplified.

In standard broadcast work we are interested in four
properties of the vertical antenna:

1. The amount of radiation, or signal strength, along the
surface of the earth

2. The distribution of energy at vertical angles above the
earth
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3. The driving-point impedance, that is, the impedance
seen across the terminals where energy is fed to the
antenna (usually across the base insulator)

4. The losses associated with the antenna

In studying the vertical antenna, we will first make some
assumptions that, although not always true, considerably
simplify our analysis. We will then modify our results so that
they can be applied to practical antennas.

BASIC PRINCIPLES OF VERTICAL ANTENNAS

In our study of radiation in an earlier chapter, we worked
with antenna elements that were dipoles. Much of our work
was with the half-wave dipole. We didn’t consider the effect of
the ground as far as the antenna itself was concerned. The
ground however, is an essential part of the vertical antenna
and must be considered in all practical work. For now, let us
think of the ground as a flat, perfectly conducting plane. We
will later consider the effect of the finite conductivity of the
ground.

Our perfectly conducting ground can be thought of as
being a large mirror, as far as radio energy is concerned. Thus
the ground reflects any energy that is radiated downward
from an antenna mounted above it. If a vertical quarter-wave
antenna is mounted on the surface of the earth, the reflection
will make it ““look like" a half-wave dipole, as shown in Fig.
6-1. The ground takes the place of the “missing” 1/4

+

QUARTER-WAVE
ANTENNA

b
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PIITTT L7777 7777777 /Irl F AT 7777777777

|
]
IMAGE ANTENNA/II‘

Fig.6-1. Image antenna.
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wavelength of antenna, and reflection from the ground
supplies the energy that would be radiated by the “‘missing”
section.

Understand that the image antenna doesn’t actually exist.
If there were a tunnel or cave under the antenna where
measurements could be made, we wouldn't find the voltage or
current shown in Fig. 6-1. The way in which an image antenna
is formed by reflection can be understood by considering what
happens when a flashlight is directed into a mirror. In Fig 6-2
the flashlight is pointed in such a way that the light shines
directly into the observer's eyes. The flashlight is actually
pointed away from the observer, but the image flashlight in
the mirror is pointed directly at him. The effect is the same as
if an actual flashlight was located behind the mirror site with
the mirror removed. This is directly analogous to the creation
of an image antenna be reflection from the ground. Just as the
direction in which the flashlight is pointing is reversed by the
reflection, so the polarity of the charge on the image antenna
will be reversed.

MIRROR REFLECTED RAY
| ,\-"'::':" ///
---::E%ﬁf::zjii-\*
myiiie B ]\\
===£

IMAGE FLASHLIGHT

Fig. 6-2. Explanation of image-antenna principle.

Current Distribution

The pattern of the vertical antenna, and its driving-point
impedance are affected to some extent by the way the current
is distributed along the antenna. A rigorous analysis of current
distribution is quite complicated. Fortunately, such an
analysis isn't necessary. We can make a few assumptions that
will be adequate for most purposes.
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Figure 6-3 shows a quarter-wave vertical antenna. If the
antenna were infinitely thin, the current distribution would be
sinusoidal. The current would be zero at the top, where there is
no place for it to flow, and maximum at the base. In the same
way, the voltage would be maximum at the top, where no
current flows, and minimum at the base. In actual antennas
the current distribution isn’t exactly sinusoidal, but it is nearly
so. Later we will see how the departure of the current from a
sinusoidal distribution affects the radiation pattern and the
driving-point impedance.

N\
N4 ANT \\CURF{ENT DISTRIBUTION

Fig. 6-3. Current on quarter-wave
antenna.

Figure 6-4 shows a vertical antenna that is arbitrarily
longer than 1/4 wavelength. To find the current distribution,
we can start at the top, where the current is zero and the
voltage maximum. The current will increase and the voltage
will decrease as we proceed down the tower.

If the antenna were ideal (without losses), the current
would decrease as shown by the solid line in Fig. 6-4A.
Actually, in a practical antenna, it will be more as shown by
the dashed line. Even then, there will be a great deal of
variation from one tower to another, depending on the physical
configuration of the tower. Similarly, if there were no losses,
the phase distribution would be as shown by the solid line in
Fig. 6-4B. The current would have one phase above the
quarter-wave point and another phase below it. That is, the
current would be flowing in one direction in the top part of the
antenna and in the other direction in the bottom part. In an
actual tower the current direction does reverse at about the
quarter-wave point, but the transition is more gradual, as
shown by the dashed line in Fig. 6-4B. We will have many
occasions to consider the current distribution on a tower,
because many of the properties of an antenna are intimately
related to its current distribution.
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Fig. 6-4. Current distribution and
phase on a practical antenna.

THEORETICAL

ACTUAL 1

| -90° 0 +90°
(A) CURRENT (B) PHASE

Radiation at Vertical Angles

A 3-dimensional view of the radiation pattern of a vertical
tower is shown in Fig. 6-5A. As long as the ground conductivity
is uniform around the antenna, it will radiate equally well in
all directions in a horizontal plane: that is, the pattern along
the ground will be a circle (Fig. 6-6B). This pattern is the same
as would be seen in looking down on the doughnut-shaped
pattern of Fig. 6-5A from the top.

Although in broadcast work we are primarily interested in
how well an antenna radiates energy along the surface of the
earth, we cannot ignore its vertical pattern or how well it
radiates energy at vertical angles above the horizon.
Radiation at vertical angles is of interest for three reasons:

1. The energy that is radiated at vertical angles is not
available for coverage of the primary service area of
the station.
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2. Radiation at vertical angles provides coverage of the
secondary service area of the station.

3. Radiation at vertical angles may cause interference to
cochannel or adjacent-channel stations at night.

ANTENNA
AXIS

~ SOLID PATTERN ToP | VIEW
(A) (8)

Fig. 6-5. Radiation pattern of a vertical antenna.
EFFECTIVE FIELD INTENSITY AT ONE MILE

All AM station allocations and antenna designs are based
on the effective ( or inverse or unattenuated) field intensity at
one mile from the antenna E,, . (This is sometimes called
simply the effective field.) This is the field intensity that would
be produced if the antenna were located over a perfectly
conducting earth. It definitely is not the field intensity that we
would actually measure at a distance of one mile from the
antenna.

In making preliminary computations, we can use this
theoretical effective field intensity. After a stationis installed,
the actual effective field intensity is determined from actual
field-intensity measurements. Many different measurements
are made to determine this value, so it is quite representative
of the actual behavior of an antenna.

Ideal Hemispherical Radiator

The vertical-radiation pattern of an antenna depends on its
height. As a reference we often use the theoretical pattern of
an ideal hemispherical radiator that is mounted on the surface
of the earth. Of course, such an antenna is not realizable
physically, but if it were, it would have a semicircular pattern
in the vertical plane (Fig. 6-6). It is easy to calculate what the
field intensity of such an antenna would be at a given distance
from the antenna: thus it makes a convenient reference.
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Fig. 6-6. Pattern of ideal
hemispherical radiator. IDEAL
RADIATOR
°
Calculating Effective Field of Ideal Radiator

The area of a sphere is given by
A =A4nr

where A is the area, and r is the radius. The area of a
hemisphere is half this value: that is,

A =277

Now, we want to find the field intensity from our ideal
hemispherical radiator at a distance of one mile. Since one
mile is equal to 1609m, the area in square meters of a
hemisphere with a radius of one mile is

A =27 X (16097 = 16,266,419 nT

Let's assume that our ideal radiator is radiating 1 kW of
power with 1007 efficiency. The power density p at the surface
of the sphere with a one-mile radius will be

1000 .
p= ——— 0.00006 W/n?
16.266.419

The relationship between radiated power and field intensity at
some distance from the antenna is

E=Vpx3m7

where p = power density in watts per square meter
E = field intensity in volts per meter
377 ohms = impedance of free space

Therefore the field intensity from our ideal radiator at one
mile is
E = V0.00006 x 377 = 0.152V/m
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This means that the field intensity along the earth at a distance
of one mile from an ideal, infinitely short antenna (uniform
hemispheric radiator) would be 152.2 mV/m.

The field intensity at a distance of one mile for antennas of
other heights can be found by similar methods. Inasmuch as
their patterns are not hemispherical, the mathematical
operations for these antennas are more complicated. We will
not calculate the field intensities here, but will merely tabulate
them.

Figure 6-7 shows four vertical antennas of different
heights together with their vertical-radiation patterns. Notice
that as the height of the antenna is increased, the
vertical-radiation pattern is squashed. so that more energy is
radiated along the surface of the earth. The signal intensity
increases as the height of the antenna is increased, until a
maximum is reached when the antenna height reaches 225°. It
is not always practicable to use antennas of this height,
because after a height of 180° is reached, a minor lobe starts to
form at a vertical angle of about 60° (D in Fig. 6-7). This minor
lobe can be desirable in that it may increase coverage of the
secondary service area: or it can be undesirable in that it may
cause skywave interference to other stations at night.

A B Cc (0]

LN LN o>k P el

VERTICAL 14 0311a 122 5/8a
RADIATION VERTICAL VERTICAL VERTICAL VERTICAL
PATTERN ANTENNA ANTENNA ANTENNA ANTENNA

FIELD INTENSITY 90° 1122 180° 225°
AT EARTH'S SURFACE 194 9 mV/m 200mv/m 236 2 mVim 267 mV/m

Fig. 6-7. Vertical-radiation patterns for antennas of various heights,
GROUNDWAVE SIGNALS

The primary service area of a standard broadcast station
is served by the groundwave. If the earth were a perfect
conductor, computing the field intensity of the groundwave
signal would be very simple. Figure 6-8 gives the field intensity
at one mile from the antenna for various antenna heights, with
a radiated power of 1 kW. To find the unattenuated field
intensity for any other distance or radiated power, we merely
have to substitute values into the equation

E,VP
d

E=
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where d = distance from transmitter in miles
E, = intensity of field at one mile, 1 kW
P = radiated power in kilowatts

Suppose, for example, that we have a 5 kW station with a
90° antenna and wish to find the unattenuated field intensity at
2 miles from the antenna. From Fig. 6-8 we find the value of
E, to be about 195 mV/m. The other parameters are d = 2 and
P =5. Substituting these values into the above equation gives
us —

195V'5

=218mV/m
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Fig. 6-8. Field intensity at one mile and 1 kW versus antenna height.

Figure 6-9 shows a plot of the vertical-radiation
characteristics of vertical antennas taken directly from the
FCC Rules. The curves at the left represent field intensities in
millivolts per meter for a radiated power of 1 kW. They give
the field intensity at one mile along the surface of the earth
and at all vertical angles. Inasmuch as there is no radiation at
all from the top of a vertical antenna, the curves all go to zero
at 90°.

The curves at the right of Fig. 6-9 are apt to be confusing.
The radiated power is not specified and is not assumed to be
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constant. The radiated power for each antenna height is
adjusted to produce a field intensity along the surface of the
earth of 100 mV/m at one mile from the antenna. Thus the
curve for each antenna height shows what the field intensity
will be at a radius of one mile for all vertical angles if the field
intensity along the surface of the earth is 100 mV/m. Both sets
of curves of Fig. 6-9 are useful for calculating the field
intensity that the antenna will produce at great distances from
the antenna by skywave propagation.

N /50 60‘/ 700-80° 90’ ao-~7o 60 ~. 50’

At - X x 40
~ ~ N\ \/ ,-b_,;\ <
/ 0.\/\/ \/ /( \ . 0312

- ./ 025 \-\03,“\ ozs/x(so') Yosomeon

Il
40 60 80 100 MV/M

EFFECTIVE FIELD
FOR ALL HEIGHTS,
100 MV/M

¢y,
280 240 200 160 120 80
RADIATED POWER, t KW

Fig. 6-9. FCC vertical-radiation characteristics.

Earlier we computed a field intensity for a distance of 2
miles from an antenna, assuming the ground was a perfect
conductor. The calculation is useful in that it shows the
theoretical maximum field intensity, but it doesn’t tell us the
actual field intensity. The ground is not a perfect conductor: in
fact. it is a rather poor conductor that has both resistance and
capacitance. The amount of resistance and capacitance
depends on the frequency of the signal and the composition of
the earth in the region of interest. At standard broadcast
frequencies the earth acts as a resistance, and we can ignore
the capacitive effects.

It would seem at first glance that the earth is such a large
conductor that its resistance shouldn't have much effect on a
signal. This isn't true, because the skin effect confines signals
to a layer close to the surface of the earth.

Ground Conductivity

The attenuation of radio signals due to the earth’s
resistance is normally expressed in terms of conducitivity
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rather than resistance. Conductivity is the measure of the
ability of a specific material, such as the ground, to conduct
electricity. It is therefore different for different materials. It is
the reciprocal of resistivity p, which is given as

RA

p = —
l

where R is the resistance of a certain specimen of wire or
other conductor, A is the area of the specimen, and [ is the
length. Conductivity o, then, is given as
1
RA
Conductivity is thus stated as so many mhos per unit length.
For the earth it is given as so many mhos or millimhos per
meter. If a solid cube of earth, one meter on a side, has a
conductance of one mho between opposite faces, it has a
conductivity of one mho per meter.

Much of the literature dealing with the conductivity of the
earth gives conductivity in electromagnetic units. These are
units of the cgs electromagnetic system of units, which was
formerly widely used in scientific work. To convert from
electromagnetic units (emu) of conductivity to millimhos per
meter (mhos/m) simply multiply by 10" . For example, the
conductivity of sea water is about 5000 X 10 " emu. The
conversion is as follows:

5000 x 10 " emu X 10 ' 5000 mmho per meter

Figure 6-10 shows the ground conductivity for the 48
conterminous states of the U.S. and the lower part of Canada.
(The U.S. map is included in the FCC Rules as Fig. R-3, and
the Canadian map is available from Canada’s Department of
Communication.) From such maps we can find the
approximate ground conductivity in any given area. Later we
will see how to determine the ground conductivity in the
primary service area of a station by using data from
field-intensity measurements.

Groundwave Field Intensity

Once we know the ground conductivity in an area. we can
compute the groundwave field intensity as a function of
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NUMBERS ON MAP REPRESENT ESTIMATED EFFECTIVE GROUND CONDUCTIVITY
IN MILLIMHOS PER METER

CONDUCTIVITY OF SEAWATER IS NOT SHOWN ON %3P BUT IS ASSUMED TO BE
5000 MILLIMHOS PER METER

’
GROUND CONDUCTIVITY IN EMU = ;o
FIGURES »10™" N

Fig. 6-10. Numbers on map represent estimated effective ground conduc-
tivity in millimhos per meter. Conductivity of seawater is not shown on
map, but is assumed to be 5000 millimhos per meter.

distance. A common problem in determining whether or not
interference will exist between stations is to determine the
distance to a given field-intensity contour. The FCC Rules
contain 20 graphs giving field intensity as a function of
distance and ground conductivity. These graphs cover all of
the frequencies in the standard broadcast band.

Figure 6-11 shows the FCC graph covering signals between
970 and 1030 kHz. Note that the curves in this graph are based
on an unattenuated field intensity of 100 mV/m at one mile
from the antenna. If the antenna does not produce a field
intensity of 100 mV/m at one mile, which is likely, it will be
necessary to scale the parameters.
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Fig. 6-11. Field-intensity versus distance.

Assume that an antenna produces an unattenuated field
intensity at one mile of 100 mV/m and is located in an area
where the ground conductivity is 6 mmho/m. Suppose we wish
to find the distance to the 500 uV/m (0.5 mV/m) contour. We
can read the distance to the 0.5 mV/m contour directly from
the chart as 32 miles.

In most cases, the unattenuated field from the antenna at
one mile will have some value other than 100 mV/m. Suppose
for example, that the field intensity is 175 mV/m. To use the
curves, we must multiply the desired contour, 500 «V/m, by
the ratio of 100 mV/m to the actual unattenuated field
intensity, 175 mV/m.

0.5 100 =285uV/m
Cs M
This means that to find the distance to the 500 «V/m contour of
our antenna, we will have to find the distance to the 285 uV/m

contour in the chart. We can now read this distance as about 39
miles.
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MINIMUM ANTENNA HEIGHT

The FCC station allocations rely heavily on the
unattenuated field from an antenna at a distance of one mile
from the antenna. Of course, the actual field intensity is less
than this value because of the attenuation of the earth:
nevertheless, this figure is very useful in calculating actual
coverage and interference contours.

The FCC Rules require that any new station, or any station
undergoing major modifications, have an antenna system that
meets certain minimum standards. Figure 6-12 shows curves
from the FCC Rules that specify the minimum acceptable
antenna height for each class of standard broadcast station. If
these minimum heights are not met, the Rules require the
station to submit evidence that minimum field intensities at
one mile from the antenna are provided. The requirements are
summarized below.

Class IV stations must have an antenna height at least as
great as that shown by curve A of Fig. 6-12. If the class IV

1000 \I l ! ¥ T
\

900

800

700

600

500

400

VERTICAL HEIGHT IN FEET

300
Fig.6-12. FCC curves for

minimum antenna height.

200 Pt ——1— v N‘Igg
_ \_;_\:N I \"\ID_
| [ Al |

100 S I I | I I
500 600 700800900 1000 1200 1400 1600
1100 1300 1500 1700

FREQUENCY IN KILOHERTZ

179



station is assigned to a local channel. it may, in lieu of meeting
the antenna-height requirement. submit evidence that the
effective field intensity at one mile is at least:

Power Field Intensity
1 kW 150 mV/m
250W 75mV/m

Class II and class III stations must provide a minimum
effective field intensity at one mile from the antenna of 175
mV/m for one kilowatt of radiated power.

Class I stations must provide a minimum effective field
intensity at one mile from the antenna of 225 mV/m for one
kilowatt of radiated power.

SKYWAVE PROPAGATION

During daylight the groundwave is the only mode of
propagation of standard broadcast signals. At night the signals
are also propagated by the skywave. In (skywave)
propagation the signals that are directed upward above the
horizon are refracted (bent) by the E-layer of the ionosphere
and directed back toward the earth. The action of a signal on
reaching the ionosphere is not a simple reflection, but rather a
gradual bending until the signal is directed back toward the
earth. The process of refraction is quite complex, but by
means of a few simplifying assumptions, we can quite easily
find the approximate field intensity of skywave signals.

To keep the mathematics simple, we will assume that
signals reaching the ionosphere are actually reflected from a
virtual height, as shown in Fig. 6-13. Because of the curvature
of the earth, the signals leave the earth on an angle 6 and hit
the virtual reflecting layer at a slightly greater angle ®. The
relationship between the two angles is given by

cos ¢

coshP= ——m
1+ h /e

where 6 = elevation angle
& = incident angle with reflecting layer
h. = virtual height of reflecting layer
r. = vadius of earth (in the same units as h)
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Fig. 6-13. Reflection of signal
fromionosphere.

The sum of the interior angles of a triangle is 180°;
therefore we can write the equation

=2 -0

where ¢ is the angle at the center of the earth (Fig. 6-13). Now,
there is one more principle from geometry that will enable us
to find the distance d between the transmitting antenna and
the point where the signal returns to the earth: The distance
along any great circle on the surface of the earth is given by

d=r1.¢
where d is in the same units as r., and ¢ is expressed in
radians.

The remaining step is to plug numbers into the equations.
The radius of the earth is 3960 miles, and the commonly
accepted value for the virtual height of the E-layer is 110
kilometers, or 68.35 miles. We now can write the equations

d=1382(d —9)

cos d = 0.983 cos 0

where d is in miles, and the two angles are in degrees.

Suppose, for example, that we wish to find the distance
between a transmitting antenna and the point on the surface of
the earth where a signal will return if it is radiated at an angle
of 15° . Using the above equations,

cosd = 0.983 cos @
= 0.983 cos 15° = 0.9495
b =18.3°
d = 138.2 (18.3° — 15°) = 454 miles
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PROBABLE INTENSITY OF SKYWAVE SIGNAL

The amount of jonization at any layer in the ionosphere
depends not only on the time of day but also on such things as
sunspot cycles. Our field-intensity computations are therefore
approximate. For this reason it is customary to express the
field intensity of skywave signals in statistical rather than
absolute terms. We thus state a field intensity that we might
expect to be exceeded part of the time. In station-allocation
computations the FCC uses values that might be expected to
be exceeded 10% and 50% of the time. Curves are given in the
Rules that simplify the computations.

Figure 6-14 shows a graph of the field intensities that
might be expected 10% and 50% of the time at various
distances from the transmitting antenna when the radiation at
the pertinent elevation angle has a field intensity of 100 mV/m
at one mile from the antenna. Thus this graph can be used to
get a statistical measure of the field intensity of the skywave
at any distance from the antenna. The first thing that we must
know to use these curves is the pertinent angle of elevation,
that is, the angle of radiation or departure. We can get this
from Fig. 6-15, which is taken from the FCC Rules.
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Fig. 6-14. Skywave signals for 10% and 50% of the time. Skywave range for
frequencies 540 kHz to 1600 kHz, based on a radiated field of 100 mV/m at
one mile at the pertinent vertical angle.
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Suppose. that we have a 10 kW transmitter with a 90°
antenna and we wish to know the field intensity that we can
expect 50% of the time at a distance of 500 miles from the
transmitting antenna. From Fig. 6-15 we can see that the
signal reaching the earth at this distance must be radiated at
an elevation angle of about 11°. Now we need to know the field
intensity that our antenna radiates at this angle. We can find
the field intensity at one mile using an equation given earlier.

1: FOR 1000 kHz AVERAGE h,—FOR USE IN COMPUTING 50%
SIGNALS

2. FOR 1000 kHz MAXIMUM h,

3: FOR 1000 kHz MINIMUM h,,

4. AND 5 CONTAIN ALSO AN ESTIMATED CORRECTION FOR
DEVIATION FROM MIDPOINT REFLECTION—FOR USE IN COM-
PUTING 10° SIGNALS 5

Fig. 6-15. Graph for finding radiation (departure) angle 6 as discussed in
text.

183



E_E,, VP 19510
=0 s ———

=617mV/m

where E; = effective field intensity of 90° antenna at one mile
for 1 kW (Fig. 6-8)
P = actual radiated power
d = distance from the antenna in miles

Now, to find the field intensity at one mile at an angle of
11°, we use the contour curves on the right side of Fig. 6-9,
From the curve for a 90° antenna, we see that if the field
intensity along the surface of the earth was 100 mV/m, the
field intensity at an angle of 11° would be about 98 mV/m. This
isthe same as saying that the radiation at an elevation angle of
11°is 98% of the radiation along the horizon. We just found that
in the case at hand the field intensity along the surface of the
earth will be 617 mV/m, so the field intensity at an angle of 11°
will be

617 x 0.98 = 604 mV/m

Now we go to the 50% curve of Fig. 6-14, where we see that
the 50% field intensity would be about 58 mV/m if the radiated
field intensity was 100 mV/m at an elevation angle of 11°.
Actually, our field intensity at this angle was found to be 604
mV/m, so the value of field intensity that we would expect to
find 50% of the time at a distance of 500 miles would be

604
— X 58 = 350 mV/m
100

Finding the probable intensity of skywave signals
admittedly isn’t a simple procedure, but it is a very handy
technique to be familiar with. If an engineer receives a
complaint that his station is causing interference to a station in
a distant city, the first thing he should do is to find what angle
his antenna is radiating at. Then he can start checking to find
out what might have gone wrong.
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TOP-LOADED AND SECTIONALIZED TOWERS

From the preceding discussions of groundwave and
skywave propagation, it is apparent that, for the greatest
primary service area with a given radiated power, we should
maximize the field intensity along the surface of the earth and
minimize the radiation at angles above the horizon. One
approach is to use a tower that is nearly 1/2 wavelength high.
If the height is increased beyond this, a high-angle lobe will
form that can cause skywave interference and reduce the
distance to the fading wall.

As noted earlier, the vertical-radiation pattern of an
antenna is related to the current distribution along the tower.
In Fig. 6-16 we see that when a tower is greater than 180°, there
is a phase reversal of the current. This means that current is
flowing on the tower in two different directions at the same
time. This is responsible for the high-angle lobe that is found in
the vertical-radiation pattern in towers that are taller than
180°. If we could find a way to avoid the phase reversal in a tall
tower, we could increase the field intensity along the surface
of the earth without creating a high-angle lobe in the pattern.
This can be done, and many different types of antennas have
been designed for the purpose.

180°

instant.

I‘

g
}
}
i Fig. 6-16. Current direction at one
!
’
)

The simplest antenna of this type is the so-called Franklin
antenna, or Franklin array, shown in Fig. 6-17. Here we have
two 180° towers, one mounted on top of the other. This
arrangement does not act lile a 360° tower, because of the way
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PHASE-REVERSING  Fig. 6-17. Franklin antenna.
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signals are fed to it. The feed system is designed so that the
currents in the two 180° sections are in phase. This means that
we have no phase reversal in the current distribution and
consequently, no high-angle lobe in the vertical-radiation
pattern. Several of these antennas have been in use for many
years. The principal limitation has been keeping the currents
in phase through all the weather conditions that affect the
insulation between the two sections. Additional work is being
done on sectionalized towers, and they may find wider use in
the future.

Another thing that we notice when comparing the
radiation pattern with current distribution on antennas of
various heights is that, in taller towers, which have greater
radiation along the surface of the earth, the current loop, point
where the current is greatest, is farther from the ground. It
would seem, therefore, that if we could find a way to raise the
current loop in an antenna, we would also increase the field
intensity along the surface of the earth. One way of doing, this
isby top loading (Fig. 6-18).

In an ordinary tower the current is effectively zero at the
top of the tower simply because there is no place for it to flow.
Actually, the current is not exactly zero, because there is

—7 S TOP-LOADING
STRUCTURE
LESS THAN
180° Fig.6-18. Top-loaded antenna.
/77777
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always some capacitance between the top of the tower and the
earth. This provides a clue as to how top loading works. When
there is a structure such as the ““top hat of Fig. 6-18 at the top
of the antenna, there will be a substantial current at the top as
shown in Fig. 6-19. The top-loaded antenna looks electrically
like a taller tower in that the point of maximum current is
higher above the ground.

Top-loaded antennas have been used in many cases in the
past where, for one reason or another, taller towers were
impractical. The combination of top loading and sectionalizing
seems to provide an opportunity for improved control of
current distribution and hence the vertical-radiation pattern of
atower.

N
\
\
\ Fig. 6-19. Current distribution on
_d- atop-loaded tower.
TOP-LOADED
TOWER CURRENT
DISTRIBUTION
| e——————=
|
TOWER IMPEDANCES

Whenever we speak of the impedance of an antenna, we
must be careful to specify the point in the antenna that we are
talking about. An antenna is in many respects like a
transmission line that is open at the receiving end. There are
standing waves of voltage and current along the tower:
therefore the impedance varies along the tower. At the top of
the tower the current is zero, or nearly so, and the voltage is
high. The impedance. which is the ratio of voltage to current,
is also high at the top. If the current really dropped to zero, the
impedance would be infinite. About 90° down from the top of
the tower, the voltage is minimum and the current is
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maximum. The impedance at this point will, therefore, be
much lower.

In standard broadcasting we are interested in the
impedance at two points on the tower. One is the impedance at
the base of the tower., where it is fed. The other is the
impedance at the current loop, where the current is
maximum. We will consider these two impedances separately.

Base Impedance

We are interested in the impedance at the base of the
antenna for many reasons. Inasmuch as the base is where
energy is usually fed to a tower, we must match the base
impedance to the characteristic impedance of the
transmission line for maximum power transfer and minimum
reflection. Furthermore, the base impedance includes both the
radiation resistance of the tower and the loss resistance
assocated with it. If this impedance is extremely low, the loss
resistance will be a substantial part of the total resistance,
thus making the losses high.

Figure 6-20 shows a plot of the resistance and reactance at
the base of a tower versus tower height. In this figure the
tower height is given in fractions of a wavelength. The height
corresponds to the length of a wave at the operating frequency
in free space: that is, the velocity of propagation along the
tower is not taken into consideration when specifying the
height. This might seem like a strange practice. After all,
when we specify the length of a transmission line, we take the
velocity of propagation into consideration. There are two
reasons why we don’t do the same thing with antenna height.
One is that the velocity of propagation depends on the physical
configuration of the tower and often is not known. The other is
that the vertical-radiation pattern is easier to compute when
the height is specified in terms of the velocity of propagation in
free space.

Considering the reactance curve of Fig. 6-20, we see that
for antennas that are much shorter than 1/4 wavelength, the
reactance is negative, or capacitive. Actually the tower
contains both inductance and capacitance at all heights. The
reactance is capacitive at tower heights below 1/4 wavelength
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Fig. 6-20. Resistance and reactance versus tower height.

because the capacitive reactance predominates at these
heights. As the tower height increases, the capacitive
reactance decreases until, at a height just below 1/4
wavelength, the reactance drops to zero. At this height the
inductive and capacitive reactances are equal and cancel each
other. This height is often called the first resonance of the
tower. As the tower height is increased above this value, the
reactance becomes inductive and increases with tower height.
At somewhere below 1/2 wavelength, the reactance again
drops to zero. This point is called the second resonance of the
tower.

Looking now at the curve for the resistive part of the base
impedance, we see that it increases with tower height from a
small value to a maximum near the second resonance.

Looking at both the resistance and reactance curves of
Fig. 6-20, we see that at the first resonance the antenna looks a
lot like a series-resonant circuit. The reactance is zero and the
resistance is small. At the second resonance the antenna looks
like a parallel-resonant circuit. The reactance is zero and the
resistance is high. This is very similar to what we would find if
we measured the impedance looking into transmission lines of
comparable length that were open at the receiving end. Of
course, the impedances of an antenna are not exactly the same
as those of a transmission line, because an antenna is designed
toradiate energy and a transmission line is not.
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The ratio of the reactance to the resistance at the base of a
tower is of interest because it influences the bandwidth of the
tower. We can apply the concept of Q—that is, the ratio of
reactance to resistance—to antennas as well as circuits. In
antenna work we like to keep the @ low because high-Q circuits
and antennas have narrow bandwidths and high losses. In
standard broadcast stations we like to keep the @ of antennas
and networks to not much higher than 3.

Another part of the base impedance that is of interest is
the ratio of the resistive component to the characteristic
impedance of the transmission line. If the ratio is greater than
about 10:1. the design of the impedance-matching network will
be complicated somewhat.

From the broadcast engineer’s point of view, there isn’t
much that can be done about the height of a tower. He is
interested more in how the impedance of a tower of a given
height varies with frequency. Figure 6-21 shows the reactance
and resistance seen at the base of a tower that is 90° high at the
carrier frequency. Note that the reactance is inductive on
either side of the carrier frequency and that the first
resonance is just below the operating frequency. The FCC
Rules require that the base impedance be measured at 5 kHz
intervals over a range of 20 kHz below the carrier frequency to
20 kHz above the carrier frequency.
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Fig. 6-21. Base resistance and reactance versus frequencv.

Loop Impedance

In directional antennas the magnitude and phase of the
current at the current loop, which is about 90° from the top of

190



the tower. are sampled and used in computing the radiation
pattern. It is thus useful to have some idea of the impedance of
the antenna at the current loop. Unfortunately the relationship
between base impedance and loop impedance depends on the
actual current distribution along the antenna. This, in turn,
depends on many factors, including the shape of the tower and
the presence of other structures, such as guy wires.

Figure 6-22 shows several different tower shapes and the
current distribution of each. If the tower were infinitely thin,
the current distribution would be very nearly sinusoidal. When
the cross section of the tower is uniform, the current
distribution can still be assumed to be sinusoidal for most
practical purposes. When the tower cross section is not
uniform, the current tends to increase with cross section.
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Fig.8-22. Current distribution for various tower shapes.

When the current distribution is sinusoidal, the base
resistance is related to the loop resistance by the equation

R,
sin* h

where R, = base resistance in ohms
R, = loop resistance in ochms
h = height of the tower in degrees

This equation neglects reactance, which isn't important,
because the base reactance is tuned out by the
impedance-matching network.

To a first approximation the base and loop currents are
related by the equation

Ib =1 sinh
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where I, = base current in amperes
I, = loop current in amperes
h = tower height in degrees

Figure 6-23 shows a plot of loop resistance for various
tower heights. Of course, these curves are only approximate,
but they are sufficiently accurate to give the engineer a good
idea of the range in which tower impedances should fall.
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Chapter 7

Introduction to
Directional Antennas

T T o T ey ST ey W e S e (1o VRS  S E

By far the most widely misunderstood antenna system is the
AM directional-antenna array. Directional antennas are
designed by consulting engineers who specialize in the field,
and often all maintenance other than the simplest routine
inspection is also done by consulting engineers. The whole field
is often thought of by the broadcast engineer as some sort of
black art rather than an engineering discipline.

One reason so few broadcast engineers master the
principles of directional antennas is that the mathematical
expressions involved are usually complicated. Another reason
is that many directional-antenna systems seem to resist
operating in the way they theoretically should. In this chapter
we will develop the equations for determining the field
intensity from a directional-antenna system. We will do this by
considering each of the parameters that influences the field
intensity, one at a time, and then combine all of the
parameters into a single equation. In this way the complicated
equation, when we get to it, will have lost some of its
awesomeness.

There are many parameters that enter into an equation for
the field intensity from a directional antenna, including:

1. The geographical orientation of the antenna system
2. The spacing between the towers of the array

193



3. The bearing from some reference to the point where
the field intensity is to be determined

4. The relative phases of the currents in the towers

5. The relative magnitudes of the currents on the towers

Fortunately many of these parameters are fixed when the
system is installed and do not have to be varied. For example,
there is nothing a broadcast engineer can do about the spacing
between the towers of an array once the towers have been
erected. What the engineer needs to know is how all of the
parameters of a system contribute to the antenna pattern, as
well as how to hold the pattern within prescribed limits by
varying only the magnitudes and phases of currents in the
towers.

Let us start by considering a simple array that has only
two towers. To keep things simple, we will assume that the
towers are of equal height and are located on a north—south
line. We will further assume that the earth in the vicinity of the
antenna is flat and that all field intensities we consider are
along the surface of the earth. For now we will only be
concerned with the shape of the pattern, that is, the field
intensity in one direction as compared with that in another
direction. In our analysis we will make use of the following two
principles, which were described earlier.

Linear Superposition. Inasmuch as our antenna system is
a linear system. we can find the field intensity at some point in
space by finding the field intensities that each of the towers
would produce at that point if acting alone, and then combining
the fields to find the resultant field.

Vector Addition. We will consider the field produced by
each tower of a directional-antenna array as a vector quantity,
that is, a quantity having both a magnitude and a phase angle.
We will find the resultant field intensity at a point in space by
combining the field intensities from each of the towers by
vector addition.

In dealing with the field intensities from the various
elements of a directional-antenna system, we will deal with
two different sets of values. The first is the theoretical value,
which was determined when the array was designed. This is
really what the values of parameters ought to be. We will also
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deal with measured values, which tell us what the values of
parameters actually are. In this chapter we will only be
concerned with theoretical or calculated patterns. In Chapter
14 we will deal with field-intensity measurements and their
interpretation.

TOWER-SPACING EFFECTS

Figure 7-1 shows two towers spaced along a north—south
line. We will assume for the present that the currents in the
two towers are in phase and have the same magnitude. We will
represent the field intensity from each tower as 1 £ 0, meaning
that it has a unit magnitude and that the field intensities are in
phase. The tower spacing is represented as the distance S. For
our purposes, it will be much more convenient to express S in
degrees than in feet. Of course, when we know the operating
frequency, we can convert between degrees and feet whenever
it is convenient to do so.

Effects in Line with and Perpendicular to Towers

In Fig. 7-1 we have two observation points. Point Pz is due
east of the midpoint between the two towers. Point Py, is due
west of the midpoint. It is obvious that the signal from tower 1
travels the same distance to P as the signal from tower 2
does. Since the fields are in phase at the towers and travel
through the same distance, they will be in phase when they
reach P; . Thus the resultant field intensity is the vector sum
of the field intensities from the two towers, that is,

E=E +E

N
TOWER 2 Q EJ0°

Py oo o o o 8% = = — = -Pg

Fig. 7-1. Effect of tower spacing
at right angles to line of towers.

TOWER1!SSE,L0_°
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(Here we have neglected any attenuation in the paths from the
towers to the observation points. We can get around this
simplification quite easily later on.)

The paths from the towers to P, or P, will still be equal if
we move the towers apart or closer together. Thus the
resultant field intensity at P; or Py is independent of the
spacing between the towers. In general, the field intensity
along a line perpendicular to the line of towers and passing
through their midpoint is independent of the spacing between
the towers. That is, we can move the towers closer together or
farther apart. but the signal along the midpoint line will not
change.

In Fig. 7-2 our observation points are along the line of
towers. Point P, is due north, and point Ps is due south. Point
Py is closer to tower 2 than to tower 1, so the signal from tower
2 arrives at Py a very short time ahead of the signal from
tower 1. This time difference is extremely small, but
extremely important. It means that the signal from tower 2
leads the signal from tower 1 by some phase angle. The
amount of the phase angle is simply S° where S is the spacing
between the towers. It is for this reason that we specify § in
degrees instead of feet.

Pn
:
TOWER 2 ﬂ EA0°
go Fig. 7-2. Effect of tower spacing

along line of towers.

TOWER 1 {L E0°
P'S
The field intensity at Py is the vector sum of the signals
from the two towers, but the signals are not in phase, because
of the different path lengths. The resultant field intensity at
point P, is
E=E ,00+E0C+S
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For example, suppose that the two towers were separated by
180°. The resultant field intensity at point Py would be

E, =E +E, £18°=E, —E, =0

Since E, and E, are equal, there would be no signal at all at
point Py .

A similar situation prevails at point Ps . Here the signal
from tower 2 lags the signal from tower 1 by $°. If the spacing S
was again 180° the resultant field would be

E=E 0°+E, t-180°=E, —-E, =0

Again, there is no signal at all at the observation point.

In both examples above we somewhat arbitrarily assigned
a 0° phase angle to the signal from tower 1 and assigned the
lead or lag to the signal from tower 2. This merely means that
we have chosen tower 1 as the reference tower. It is common
practice in directional antenna systems to chose one tower as
the reference tower. In most of the examples in this chapter
we will designate tower 1 as the reference tower.

Effects at Other Bearings

Before going any further, we must stipulate that our
observation points are not close to the towers. We must be far
enough away that we are concerned with the radiation field,
and not the induction field. from each tower. Next, we must be
far enough away that we can consider the array of towers to be
a point source of radiation (this is shown in Fig. 7-3). If the
observation point P is far enough away from the towers, we
can consider the lines A and B to be parallel for all practical
purposes. The equations that we will derive for field intensity
will all be based on this assumption. This is why
directional-antenna field-intensity measurements tend to be
meaningless if they are made too close to the antenna site.

So far we have found that tower spacing has no effect at all
on field intensity at points east and west of our line of towers,
but a very significant effect on the field intensity at points
north and south of the towers. The question naturally arises as
to what effect the spacing between towers has at observation
points at other bearings.
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TOWER 2

Fig. 7-3. Effect of distance from
towers.

TOWER 1

In Fig. 7-4 we have the same two towers as in the
preceding section, but our observation point is no longer on the
line of towers or perpendicular to the line. The observation
point P is at an arbitrary angle ¢ to the line of towers. Just by
looking at the figure, we can tell that the signal from tower 2
will travel over a shorter path than that from tower 1, so it will
lead the signal from tower 1, in phase. We want to find out just
how much phase difference there is between the two signals,
and particularly how this phase difference is influenced by the
spacing between the two towers. We have already assumed
that the observation point is far enough away from the towers
that we can consider the line from tower 1 to point P to be
parallel to the line from tower 2 to point P. This assumption
allows us to draw the right triangle shown in Fig. 7-4. From
this figure we see that the path difference in electrical degrees
between the signals is given by

Path difference = S cos ¢

where S is the spacing in electrical degrees, and ¢ is the
bearing from the line of towers in angular degrees. In this
expression we use both angular and electrical degrees to find a
phase shift in electrical degrees. This should cause no
confusion. In fact. the choice of these units simplifies the
calculations.

The expression S cos ¢ will give the relative field intensity
at any angle, even on the north—south and east—-west lines
that we investigated earlier. If the observation point is on an
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east—west line, the angle ¢ will be £90°. The cosine of 90° is
zero, so the equation tells us that the spacing between towers
has no effect on the signal at points due east and west of the
towers. This is exactly what we saw in our inspection of Fig.
7-1. If the observation point is due north or south of the towers,
the angle ¢ is 0° or 180°. At these values of ¢, cos ¢ is either +1
or —1. This means that the phase difference between the
signals from tower 1 and tower 2 is either +8 or —§, which is
exactly what we found in our inspection of Fig. 7-2. Thus the
expression S cos ¢ is general and can be used to find the
relative field intensity at any bearing from the line of towers.
This expression gives some additional insight into the
pattern of a 2-tower array. It shows that the relative distance
traveled by signals from the two towers involves the function
cos ¢. An angle may have either a positive or a negative value
without changing the value of its cosine. That is, cos 45° = cos
—45°. This means that the pattern on one side of the line of
towers will be exactly the same as the pattern on the other
side: the pattern will always be symmetrical about the line of
towers. This is true of any directional-antenna array where all
of the towers are in a straight line, regardless of the number of
towers. If we have a null on one side of the line of towers, we
will also have a null on the other side at the same angle. Of
course, the engineer operating a directional antenna can’t do
anything about the direction of the line of towers once the
system is installed. The designer, however, can and does take
advantage of the symmetry to obtain the desired pattern.

TOPOINTP

Fig. 7-4. Effect of spacing at bear-
ing.
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Effect of Phase of Tower Currents

Figure 7-5 shows a 2-tower array in which we will assume
that the currents in the two towers are equal in magnitude but
not in phase. Tower 1 is to be our reference tower. so the phase
angle of its current is 0°. The phase of the current in tower 2
will be y° earlier or later than at tower 1. If the sign of y is +.
the signal arrives at tower 2 earlier than at tower 1. If the sign
of y is —, the signal arrives at tower 2 later than at tower 1.

TOWER 2¢{ Ex\ Fig. 7-5. Effect of phase dif-
N ference between tower currents.

Scos¢
E 4°

Note that the phase angle vy is not dependent on any of the
other parameters in the system. By means of the phasor in the
feeder system, we can make y assume any positive or negative
angle that we wish. The effect of this phase shift is to change
the relative time required for the signals from towers 1 and 2
to reach any observation point. One thing that this additional
parameter does for us is to give us an infinite variety of
patterns.

To see this a little better, let's put some numbers into our
reasoning. Let's assume that all of our observation points are
at the same radial distance from the center of our line of
towers and that they are far enough away that we can consider
the array a point source. The signal from tower 1 at any
observation point will be

E=E (0

The field intensity from tower 2 is given by

TOWER 1

E=E, ;Scosf +y
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The phase angle of S cos ¢ + y includes the effect of the tower
spacing S, the bearing angle ¢, and the phase difference y
between the currents in the towers, all expressed in degrees.
We can now write an equation for the field intensity at any
point, the only limitation being that the points all be at the
same radial distance from the center of the array, and on the
surface of the earth.

E = E, [E’+E2 [Scosd>+y

One very interesting property of the preceding equation is
that the field intensity at an observation point will be zero
whenever

Scosep +y = +180°

This means that for almost any value of y, we will have two
nulls, one on either side of our line of towers. (At some values
of S and y there will be one null off one end of the line of
towers.) In Fig. 7-6 we have the pattern of a 2-tower array
where the spacing S between the tower is 120°, and the phase
angle y between the tower currents is 100°. The pattern is a plot
of the data given in the figure. Note that because the radiation
pattern is symmetrical about the line of towers, it is only
necessary to compute the pattern for angles between 0° and
180°.

N

* Fig.7-6. Pattern of 2-tower array.

S

At this point we can note some other things about the
patterns that we can get from a 2-tower array. If the quantity S
cos ¢ + vy is large enough, we will get two nulls, which can be
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moved by changing the phase of the currents between the two
towers. If the quantity is made much larger, as when the
towers are very widely spaced, there will be more than two
nulls.

In the data from which we plotted Fig. 7-6 (see Table 7-1),
the field intensity at all points has a phase angle. This is not
important as far as the pattern is concerned, because the
receiver has no way of *‘knowing’’ what the phase angle is.

There is a case where we are interested in the phase angle
of the field intensity from a 2-tower array, and that is when we
wish to combine the patterns from two such arrays to form a
more complicated pattern.

1 0 : 120cos 0 + 100 | 1lo + 1120¢os0 + 100

0 220 07,=7°

10 218 o7 =11*

20 213 06/=735

30 204 04/-78°

4 192 02/=84°

a5 185 01/-875

a7 182 003/ =89°

a8 180 0

9 7 e Table 7-1. Data for Plotting the
» 4 St Pattern of Fig. 7-6.
70 141 067705"

80 103 125515°

0 100 12950

100 79 154039 5°

10 59 1729.5°

120 40 1920

130 23 20115

140 8 20/40°

150 -4 20/-20°

160 -13 20/=65°

170 -18 20/-90°

180 -20 20/=10°

FILLING IN NULLS

The patternin Fig. 7-6 has nulls at bearings of 48° and 312°.
In these nulls the signals from the two towers of the array
completely cancel each other: theoretically. there is no signal
at all along these bearings. In a practical directional antenna,
we do not have these complete nulls. There are several
reasons for this. In the first place, an array with a complete
null would be very difficult to adjust and very unstable.
Second, although we may wish to reduce the field intensity
along certain bearings to protect the service areas of distant
cochannel or adjacent-channel stations, we rarely need to
suppress the signal completely. A substantial portion of the
population in the primary service area of our station may live
in the direction of the nulls. In this case, we want to fill in the
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nulls enough to provide service to these people. Finally, a
perfect null is usually impossible to obtain, because
reradiation from other objects, such as guy wires and other
structures, prevents complete cancellation of the signals.

To see how we might fill in a null a little, let’s look at how
we got the nulls in the preceding example. The reason the field
intensities canceled completely along certain bearings is that
the signals were equal in magnitude and 180° out of phase. If
we were to keep the phase difference between the two signals
180° but make their magnitudes unequal, the signals would still
tend to cancel, but the cancellation wouldn’t be complete. We
would have a low field intensity in the direction where
formerly there was complete cancellation of the signal.
Obviously, the greater the difference in the signals from the
two antennas, the greater the field intensity in the null.

Strictly speaking, the term null refers only to those
bearings where there is complete signal cancellation. We
should speak of a minimum instead of a partially filled null.
However we will continue to adhere to the broadcasting
custom of calling pattern minima nulls.

Field Ratio and Minimum Depth

To specify how much a null will be filled by making the
currents in the two towers unequal, we will make use of the
concept of the field ratio F5 . This is simply the ratio of the
field intensity from tower 2 to the field intensity from tower 1
or

When the two towers have the same height, the field ratio is
equal to the ratio of the currents in the two towers. This ratio is
usually designated as M, and is given by

We can write the equation for the field intensity from the
two towers as

E=E1 L0° + E, LB
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where B is the difference in phase between the fields from the
two towers. We can define the relative field intensity at any
point as the ratio of the field intensity produced by an array to
the field intensity that would be produced by tower 1 acting
alone with the same value of radiated power. That is

E s B B
— =120+ — ¢
. E,

Since F,, = E, /E, , we can write this equation as

E
- =1L0°'+'F2| LB
1

By arather lengthy manipulation, we canrewrite this equation
as

: 1+ Fy°

21

The term (1 + F, *)/(2Fy, ) is called the minimum-depth
term. It is a measure of how much the nulls will be filled in. It
is interesting that the term will not change value if we replace
Fy with1/F; . For example, we can use 2 or 0.5 as the value of
the field ratio and get 1.25 as the value of the minimum-depth
term in either case. That is,

1+ 2 1405
2(2) 2(0.5)

The minimum-depth term is always equal to 1 or more.
When it is equal to 1, the null is perfect. At other values the null
is filled in accordingly. Since in the expression for the
minimum-depth term it makes no difference whether we use
F,, or 1/F, , when we fill a null we need only concern
ourselves with the ratio between the two tower currents. It
makes no difference which tower has the larger current. For
this reason the FCC Rules governing directional-antenna
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systems place a limit on currrent ratios rather than current
magnitudes.

COMPLETE PATTERN SHAPE

Now let’s see if we can put all that we have discussed so
far together to find the pattern of a 2-tower directional-antenna
array. Before going further, we should note that in FCC
documents the reference point for a pattern is always the
center of the array, not necessarily one of the towers. Thus the
origin of a pattern is a point midway between the two towers in
a 2-tower array, the middle tower of a symmetrical 3-tower
array, or the center of a parallelogram array.

The pattern is plotted on polar-coordinate paper, with the
center of the paper representing the center of the array. We
can rewrite the equation for the field intensity in a form that
places the reference point midway between the towers (Fig.

7-N.
{—cosd>+— + E, L cosd>-——

Inasmuch as our pattern is symmetrical. we only have to
calculate the field intensities on one side of the line of towers.

TOWER 1 T E B2

REFERENCE POINT

Fig. 7-7. Two-tower array with re-
ference point midway between
towers.

O— | N—0e—n |

TOWER 20 E g2

True Bearing of a Pattern

So far we have considered that our towers were along a
north—south line. In practice, the line of towers is often at
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some other angle (Fig. 7-8). Of course, this needn’t cause any
confusion, because orienting the line of towers along any other
bearing is just the same as picking up the pattern in Fig. 7-6
and rotating it. When we are calculating the locations of nulls,
or the field intensity at any bearing, it is convenient to use the
line of towers as a reference. By simply adding or subtracting
the angular orientation of the line of towers with respect to
north, we can get the geographic location of the various
features of the pattern.

,9 TOWER2 Fig. 7-8. Change of reference axis.
/’

N
\

NQr== == ==z
-

OWER 1

When a bearing is specified with respect to north, it is
usually called an azimuth, or true bearing. Thus a radial line
20° from the line of towers might be referred to as a bearing of
20 degrees. And a bearing of 20° with respect to true north,
rather than with respect to the line of towers, would be called
20° azimuth or 20° true.

The nulls of a pattern should be converted to true bearings
to ensure that the primary service areas of other stations are
properly protected. The geographic location of other stations
will be known in terms of the bearing from true north, not in
terms of the bearing of the line of towers.

Putting Numbers on the Pattern

We have developed the general shape of the pattern of a
2-tower array and have seen how the tower spacing and
relative magnitude and phase of the tower currents affect the
pattern. The patterns we worked with however were relative
rather than absolute. They showed the general shape of the
pattern but gave us no idea of the actual field intensity in
millivolts per meter at any bearing. We will now put numbers
on the patterns so that they will actually be plots of field
intensity.
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Our equation for the effective field intensity at one mile
can be written

E=E (OB +Fuf(6)LB]

where E, = effective field intensity from tower 1 at one mile
fromantenna f | ( 6 ),
f, (6) = vertical-radiation characteristic of towers 1 and
2.
F2| = field I’atiO
B , B = phases of fields from towers

In this equation we have introduced two new terms, f, (8)
and f, (6). These represent the vertical-radiation
characteristics of our two towers, which were discussed in
Chapter 6. For now, we will consider each of these terms to be
equal to 1, because we are now only interested in the radiation
along the surface of the earth. Thus the only problem
remaining in specifying the field intensity at any bearing is to
find the inverse or unattentuated field intensity at one mile
from each tower. We will still consider the two towers to be
identical: so if we find this field intensity for one tower, it will
apply to the other tower as well.

We can find the unattenuated field intensity at one mile
from a tower in a directional-antenna system as we found it for
asingle vertical tower in Chapter 6. Using the curve in Fig. 6-8,
we can find the field intensity for 1 kW of radiated power. We
can then use that figure to determine the actual field intensity
for whatever power is being radiated.

Suppose, for example, that we have the 2-tower array of
Fig. 7-8 and that both towers have a height of 90°. The total
radiated power is 5 kW. From Fig. 6-8 we find that the
unattenuated field intensity at one mile from the antenna is 195
mV/m for a radiated power of 1 kW. The field intensity is
proportional to the square root of the radiated power, so the
unattenuated field at one mile for a radiated power of 5 kW is
195\/5 = 436 mV/m. The actual field intensity is then

E=436[120°+F, .Scosd + v

Inasmuch as the two towers have the same height, the
field ratio F», will be the same as the ratio of the currents in
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Fig. 7-9. Two-tower array with pattern and data.
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the two towers—in this example, 0.8. We can now solve the
equation for various bearings and get the field intensity at
each bearing. This will be the unattenuated or effective field
intensity at each bearing at a radial distance of one mile from
the center of the array. The data and pattern are given in Fig.
7-9. The equation for the pattern calls for two partial nulls. The
result of the unequal currents in the tower is that the nulls are
filled to such an extent that the pattern varies smoothly
instead of having sharp notches.

PATTERN SIZE

The term pattern shape, as used in the preceding
discussion, is self-explanatory. The term pattern size is apt to
be confusing. It is a measure of how much power is radiated by
the antenna system. There are several ways that we can
specify the size of a pattern. One way is to specify the
root-mean-square or rms value of the field intensity. The rms
value of an antenna pattern is equal to the radius of a circle
plotted to the same scale that has an area equal to that
enclosed by the pattern. Figure 7-10 shows the pattern of an
array with 90° spacing and 90° phasing. The rms value is
represented by the radius of the dashed circle. The units of the
rms value are the same as the units of the pattern, usually
millivolts per meter.

There are several other ways that we can find the rms
value of a pattern. One is to use a planimeter, which is a
drafting instrument that, when moved along the contour of a
closed curve, indicates the area enclosed by a closed curve. If

- ~
-
Vs N
/ \ RMS
/ \ vALuE
I 1196 mV/m

PATTERN

Fig. 7-10. Pattern with rms value
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such an instrument isn't available. the area can be found by
plotting the pattern on rectangular graph paper and counting
the squares enclosed by the pattern. When this is done, the
scale of the rectangular graph paper should be the same as the
radial scale of the polar graph paper on which the pattern was
originally plotted.

The FCC Rules provide that the rms value of the pattern
have a certain minimum value, as given in Chapter 6. Using
the curves in Chapter 6, we found that a 90° tower radiating 1
kW of power will produce a field intensity of 195 mV/m at a
radius of one mile from the tower. If two 90° towers in
directional array radiate a total power of 1 kW, it might seem
that the rms value of their pattern should also be 195 mV/m.
This assumption, in general, is not correct. because the
vertical-radiation characteristic of two towers in an array is
not the same as that of either of the towers acting alone. An
array may ‘squeeze down’ the pattern to increase the
radiation along the surface of the earth. By the same token, it
may distort the pattern so that the radiation along the surface
of the earth is less than would be radiated by one of the towers
radiating the same power. This shows the reason for finding
the rms value of a directional-antenna pattern.

The rms value of a pattern depends on tower height,
spacing. and phasing. Figure 7-11 shows the rms field intensity
for a 2-tower array with 90° towers for various values of
spacing and phasing. This shows specifically how the choice of
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Fig. 7-11. Horizontal RMS field intensity as a function of tower spacing
and phasing.
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spacing and phasing may produce an array that actually has
an rms gain over a single tower. In general, this is a design
consideration rather than an operational one. The broadcast
engineer should. however, be aware of the consideration.

VERTICAL-RADIATION PATTERN
OF A DIRECTIONAL ANTENNA

The vertical-radiation pattern of a directional antenna is
of particular importance to stations that operate at night. The
skywave signal from such stations may easily cause
interference in the primary service area of cochannel or
adjacent-channel stations. There are two factors that enter
into the vertical-radiation pattern of a directional antenna.
The first is the vertical-radiation pattern of each of the towers
in the array (Chapter 6). The second factor is the spacing of
the towers in the array, which affects the vertical radiation
similarly to the way it affects the surface pattern.

Figure 7-12 is a side view of a 2-tower array. The actual
spacing between the two towers is $°. Now let us look down on
the array from point P, which is off the picture at the
upper-right side. As with our other observation points, point P
is far enough away that the lines from the two towers can be
considered to be parallel. The spacing between the towers as
seen from point P is no longer S, but appears to be shortened to
Scos 6, where 6 is the elevation angle in degrees.

TOPOINT P
APPARENT

TOWER
&~ SPACING
s
s

@——— ACTUAL ———
TOWER SPACING

Fig. 7-12. Foreshortening of spac-
ing due to elevation angle.

TOWER 1 TOWER 2

Now we can write a very general equation for the pattern
of a 2-tower directional antenna that applies not only on the
surface of the earth but at any value of elevation angle 6. In
vector form the equation is

E=E f (8) /S costcosp + yi+E: fz((f)/S_v €oSH Cosd + .
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We are now in a position to find the elevation angle 6 at
which a null occurs. This is important because many
directional antennas are designed to place a null in the
vertical-radiation pattern to protect the primary service area
of some other station. The field intensity above the surface of
the earth is given by

E=E £ (0) L0+ E f, (8 /s cos¢ cosl +

We know that the field intensity will never be zero if E, and E»
are not equal. Its minimum value is given by the
minimum-depth term

1+ F°
2F5
Its bearings are

S cosdcosd + v, = £180°

Thus, with a tower spacing S of 90° and a tower phasing y of
100°, the pattern will have a minimum value when

90 cos ¢ cos 6 + 100° = +180°

This equation tells us several things. First, the null doesn’t
occur at the same bearing as we look at the antenna from
different elevation angles. On the surface of the earth the
elevation angle 6 is zero, so cos 8 = +1. Thus the null occurs at
the angle where

90 cos ¢ = 180 — 100 = 80°
cos ¢ = 90/80 = 0.89
This is at a bearing of 27°. As elevation increases, the null
rotates and occurs at different bearings. For example, at an
elevation of 20°, the null occurs at a bearing (angle to the
antenna) of about 19°.

From the foregoing we can see that even though we
measure a null on the surface of the earth in the direction of a
cochannel station, it is entirely possible to be nearly blasting
the station off the air with a skywave signal.

TOWERS OF UNEQUAL HEIGHT

In all of our computations we have used towers of equal
height. This not only simplified our computations, but it is
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typical of most directional-antenna systems. Under some
circumstances, however, the towers in an array are not all the
same height. This often occurs when an FM or TV antenna is
mounted on top of one of the towers after the system has been
installed. The chief effect of unequal-height towers is that the
field ratios from the two towers will no longer be equal to the
current ratios. Suppose, for example, that we have one tower
90° in height and another 112° in height. Referring to Fig. 6-8,
we see that for 1 kW of power a 90° tower will provide an
effective field intensity at one mile of 195 mV/m, and a 112°
tower produces a field intensity of 202 mV/m. To get equal
field intensities, we must reduce the current in the 112° tower.
The field intensity is directly proportional to the current in the
tower; therefore, the current I, in the 112° tower must be
reduced by multiplying by
195

— =0.97
202

Suppose that with these two towers we wish to produce a
field ratio of 0.8. We can no longer make the current ratio 0.8,
but must modify it by the figure that we just computed. Thus
the current ratios must be

L I,
— =097x08=0.78 — =121
1 2
We can use either figure because, as far as the pattern is
concerned, it doesn't matter which tower has the larger
current.

THEORETICAL AND STANDARD

Several types of patterns are plotted for directional
antennas. Some of these are theoretical, and others are
empirical, that is, based on actual measurements rather than
computations. Today the theoretical patterns are often
actually determined on a digital computer by the designer.
This saves a tremendous amount of labor in checking proposed
designs to see if they will provide adequate protection to other
stations and adequate coverage of the primary service area.

The broadcast engineer will not be concerned with
preparing theoretical patterns unless he is making a major
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modification to this system. He should, however, be
conversant with how they are prepared and what they mean.

The FCC Rules require a plot of the theoretical pattern of
the signal strength along the surface of the earth. This is a plot
of the unattenuated or effective field intensity at a distance of
one mile from the center of the array. When vertical radiation
is significant as when a station is on the air at night. a similar
pattern must be plotted for elevation angles up to 60°, with a
separate pattern for each increment of 5°.

Patterns must be plotted on polar graph paper of standard
letterhead size. The graph area is then 7 by 10 in. The pattern
must be oriented with 0° corresponding to true north. and not to
the line of towers or any other reference. The scale divisions
should be 1, 2. 2.5, or 5. Any field intensity on the pattern that is
less than 10c of the effective field must be plotied on an
expanded scale. A typical pattern is shown in Fig. 7-13. Note
that the low field intensities to the south of the antenna are
plotted on a X 10 expanded scale.

Fig. 7-13. Pattern with MEOV
(maximum expected operating
values).

PATTERN
/,M/\‘nwmv
Prior to January 18. 1971, the theoretical pattern was
computed using some variation of the equations presented
earlier in this chapter. The resultant pattern was similar to
that of Fig. 7-13. After the pattern was plotted. the engineer
made allowances for the typical deviation of directional
antennas from theoretical performance. These allowances
were made by increasing the pattern by roughly 5% in critical
nulls. The new values were then added in the pattern as shown
by the dashed line in Fig. 7-13. The values represented by the
dashed line are called MEOV, or maximum erpected
operating values. MEOVs were used by the FCC in
determining the amount of protection provided to other
stations. Some engineers, just to be safe, would sketch an
MEOYV curve around the entire pattern.
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If. during the proof of performance of the antenna system,
the signals in the nulls could not be brought to the theoretical
values, they might still be within the MEOV and thus meet the
performance standards set forth in the stations construction
permit. Thus we actually had two patterns—the theroetical
pattern and the pattern represented by the MEOV curve.

As of January 18, 1971, the FCC decreed that every station
should have one pattern, the standard pattern. The standard
pattern is actually the old theoretical pattern, modified by the
addition of two factors. One factor is 2.5% of the rms of the
fields of the individual towers, or 6.0 mV/m, which ever is
greater. This factor is added to the theoretical value by what is
called quadrature addition. This means that both factors are
squared and then added together, then the square root is
taken. The resultant figure is then multiplied by 1.05 to get the
standard radiation pattern.

The equation given in the FCC Rules for the standard
pattern is

Esld = 1.05VE, : + Q'

The terms of this equation are discussed below.

The field intensity E,; of the standard pattern represents
the expected unattenuated field at one mile.

The theoretical pattern E,, is calculated with an assumed
loss resistance of one ohm at the current loop of any tower
over 90° high, or at the base of an antenna less than 90° high.

The quantity Q is the greater of the following:

0.025 {(6) Ery, or 6.0 f(6) \ P,

The vertical form factor f(6) is for the shortest tower in
the array. This figure is taken from Fig. 6-9 and is used for
plotting patterns at vertical angles. For the horizontal pattern
itis1.

The symbol E,,, stands for the root-sum-square or rss
value of the field intensities of the towers of the array. The rss
value should not be confused with the rms value. The rss value
of a number of quantities is the square root of the sum of their
squares (the absolute value of an impedance is found from
resistance and reactance).
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The power input to the array expressed in kilowatts is
represented by Py . If the power is less than 1 kW, the
quantity 1 is used here.

The FCC also requires that the rms value of the pattern be
given. This is computed from the theoretical pattern in the
above equation.

The standard radiation pattern was adopted to do away
with MEOV, which were inconvenient. The goal was for every
station using a directional antenna to have only one pattern.
Allocations and interference contours would then be based on
patterns that were all calculated in the same way. The
Commission has, however, recognized that directional-
antenna design is fraught with difficulties that cannot always
be anticipated. If, when actual measurements are made of the
radiation pattern, it is found that the radiation exceeds the
standard pattern over a limited range, provision is made for
augmenting the pattern. Augmentation is somewhat similar to
adding an MEOV curve, except that a definite procedure is
given for computing the augmentation, and the augmented
pattern replaces the original standard radiation pattern.
Hence there is still only one pattern for each station, which. in
some instances, may be an augmented pattern.

WRAPUP

For the past several pages we have investigated the
properties of the 2-tower directional-antenna array. Our
purpose has not been to achieve design capability, but rather
to acquire an understanding of how simple arrays operate.
And much of the information that we developed in connection
with the 2-tower array can be applied directly to more complex
arrays.
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Chapter 8

Complex Directional==
Antenna Arrays

ST T s T e S B Ve e

The 2-tower directional-antenna array described in the
preceding chapter is capable of producing a wide variety of
radiation patterns and meets the requirements of many
standard broadcast stations. Quite a few other stations,
however, require an antenna pattern that protects the service
areas of many other stations while providing adequate
coverage of their own service areas. This type of pattern is
obtained by using more than two towers. Nine or more towers
may be used in an array to obtain nulls at many different
angles or to form very broad nulls in a particular part of a
pattern.

Regardless of the number of towers used in an array, the
field intensity at any point in space may be found by first
finding the field intensity that would be produced by each
tower alone, then taking the vector sum of the several field
intensities. Unfortunately, as the number of towers in an array
increases, the complexity of the field equations also increases
at a disturbing rate. The equations are not necessarily difficult
to comprehend, but due to the large number of terms, solution
is often tedious.

Much of the complexity in the mathematical work is in
getting the equations into a form for solving with a slide rule,
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pencil. and paper. With an electronic calculator vector
addition is less tedious. We will leave the terms of the
equations that we use in vector form because it keeps them
much simpler and makes them easier to solve with an
electronic calculator.

In this chapter we will develop a method of finding the
field intensity at any point in space from an array containing
any number of towers. We will consider a graphical technique
that will show how the field from each tower contributes to the
field intensity at any point in space. We will also consider
examples of patterns that may be obtained from 3- and 4-tower
arrays.

SPACE REFERENCES

In a 2-tower array the towers obviously lie in a straight
line. When more than two towers are used, they may or may
not all be in line. For this reason we must develop a reference
system that will let the towers of an array be located anywhere
with respect to each other. We do this by assigning a
space-reference point for the array, which isn’t necessarily
located at any of the towers. We also assign a space-reference
axis, which is a north—south line through the space-reference
point. This is shown in Fig. 8-1.

SPACE
REFERENCE

AXIS /)TOWER 1

[* by Sy
Fig. 8-1. Space-reference system.

SPACE-REFERENCE
POINT

With this system there is a spacing S and an azimuth angle
¢ associated with every tower in the system. In the figure, §,
is the spacing between tower 1 and the space-reference point.
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The angle ¢ is the angle between the space-reference axis
and a line from the space-reference point to tower 1. If one of
the towers of an array was located at the space-reference
point, its spacing and azimuth angle would be zero. This is
often true of the center tower of a 3-tower array.

FINDING THE FIELD INTENSITY
OF A THREE-TOWER ARRAY

To intelligently operate and maintain a directional-
antenna system, the engineer must know the relationship
between the parameters of the system and the radiation
pattern. The parameters over which he has control are the
amplitude and phase of the currents in the various towers. He
is most interested in the field intensity at the monitoring points
set forth in the station license. In general, the magnitudes and
phases of all of the currents in all of the towers influence the
field intensity at all of the monitoring points. The amount of
influence that each current amplitude and phase has on the
field intensity at each of the monitoring points depends on all
of the design parameters of the array. including the tower
spacing and orientation.

We will start our analysis with the 3-tower in line array
shown in Fig. 8-2. The towers are conveniently located on the
space-reference axis. The center tower is located at the
space-reference point of the array and is designated No. 1. We
wish to find the effective field intensity at point P, which is
located at a distance of one mile from the space-reference
point. at an angle of 40° from the space-reference axis. We
know from the superposition principle that the field E at point
P will be given by an equation of the form

E = E, LB + E; ¢ + E; 2B

where E, . E, . E; = field intensities of towers acting alone
B, .B:.B; = phase angles of fields from towers, at
point P

Since we can easily solve an equation of this type with an
electronic calculator without further manipulation, it is only
necessary for us to find values for the Es and s to be able to
find the effective field intensity at point P. The Es are fairly
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4 Fig. 8-2. Three-tower array.
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easy to find. From the information on the station license and
from meter indications, we can compute the effective field
intensity that each tower would produce from the techniques
given in Chapter 6.

Effective Field of Each Tower

Suppose, for example, that all of the towers are 90° in
height and that the total radiated power is 5 kW. Inasmuch as
the towers are all the same height, the field ratios will be equal
to the current ratios, which are specified on the license and
can be measured with the antenna monitor. We will assume
that the ratios are as shown in Fig. 8-2, that is,

E_) =E3 =0.9E|
I, =1, =091,

The power radiated by each tower is proportional to the
square of its current. Therefore we can compute the power
from each tower as follows.

P +0.9 P, +0.9P =5kW
P, =5/2.62 = 1.91kW
P, =0.81P, = 1.55kW
P, =081 P =155kW
5.0 kW Total power

Knowing the power radiated by each tower, we can use the

information in Fig. 6-8 of Chatper 6 to find the effective field at
one mile for each of the towers. From Fig. 6-8 we see that if the
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radiated power was 1 kW, the effective field at one mile from
each of the towers would be about 195 mV/m. Inasmuch as the
field intensity is proportional to the square root of the power,
we can now find the effective field for the actual radiated
power.

E, =19%V191 =271mV/m
E, =195V155=24mV/m
E; 195V155 = 244mV/m

This gives numbers that we can substitute for the Es in our
equation, which becomes

E=2T1.8 +24.8: +288L s

Phase Angles of Fields

All we have to do now is find values for the Bs. The angle 8
is actually the relative phase of the signal from each tower
when it arrives at point P. (Remember from Chapter 7 that the
way we got a desired pattern in the first place was to arrange
things so the signals from the various towers would arrive at a
point with different phases. The phase angle 8 of a signal at a
point in space depends on the orientation of the towers, the
spacing between the towers, and the relative phases of the
currents in the towers. It is convenient to think of the angle 8
as being the sum of two other angles. One is the space-phasing
angle. which accounts for the orientation and spacing of the
towers. The other is the relative phase vy of the current in the
tower. Thus

B = space-phasing angle + y

The space-phasing angle of each tower will have the form
Space phasing angle = S cos (6n— 6)

where § is the distance in degrees between the tower and the
space-reference point of the array, 8, is the angle between the
space-reference axis and a line from the space-reference point
to tower n, and @ is the azimuth angle from the space-reference
axis to the point P at which we wish to find the field intensity.
There will be a space-phasing angle for each tower.
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We have assumed in Fig. 8-2 that all of the towers lie on the
space-reference axis: therefore, 6, and 6 are equal to zero.
Angle 6 is equal to 180° because it is below the reference
tower. In Fig. 8-2 we see that tower 1 is at the space-reference
point. so S, is zero. Inasmuch as tower 1 is our reference
tower, ¥, is also zero. Thus 8, becomes zero. At tower 2 we
find that the space-phasing angle is

S cos(b —60) =110cos (0 — 6 = 110cos @
Angle 6 in this problem is 40°. Thus

S, cos (6 — 6) =110cos (0 — 40) = 84°
B, =84+ 5° =89

Similarly. at tower 3

S, cos(6 — 6) = 110cos (180 — 40) = —840
B; = —84° — 5 = —89°

Completing and Tabulating the Solution
Now we have numbers for the 8s that we can substitute into
our equation, which becomes

E =271 ,0° + 244 , +89° + 244 , —8%° = 280 mV/m

This tells us that the effective field at point P, which is at
an angle of 40°, is 280 mV/m under the conditions described in
Fig. 8-2. We could easily use our equation to compute the entire
pattern of the array. Letting the azimuth angle ¢ from the
space reference be the variable, our now-familiar equation
becomes

E=2711,0+24 X /110 (cos ) + 5°

+ 244 /110cos (180 — &) — 5°

Using a calculator, we can compute the values of the vectors
and tabulate them at various angles as in Fig. 8-3.

This procedure can be used to find the effective field at one
mile at any azimuth for any number of towers. The technique
removes much of the mystery from the operation of a
directional-antenna array and is summarized in Fig. 8-4.
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30
60
90
120
150
180

65
186
515
757
585
271
145

244110(cos ¢) + 5° | 244/110cos(180 . ) —=5° | E(mVm)

2441115 244/—115

244/100 244/—100

244160 244/—60

244/5 244/-5

244/-50 244/ + 50

244/—90 244/ + 90

244/— 105 244/ + 105

Fig. 8-3. Pattern of array of Fig. 8-3.

Finding the Contribution of Each Tower

When an engineer finds that his antenna pattern is outside
of its prescribed tolerances at some azimuth, it is very helpful
if he knows just how the magnitude and phase of each of the
tower currents contributes to the field intensity at that
particular angle. We can find this by drawing a vector
diagram for the field intensity at the angle of interest. All that
we need for the job is a ruler and a protractor.

Suppose that we wish to study the field intensity of the
pattern of Fig. 8-3 at an azimuth of 30°. From the table we find
that the equation for the field at 30° is

E =27120°+ 244 £ 100° + 244 £ —100°

1. FIND MAGNITUDE OF FIELD VECTOR OF EACH TOWER.

2. FIND CURRENT PHASE ANGLE OF EACH TOWER.
3. ADD TOWER-CURRENT PHASE ANGLE TO ABOVE (2).
4. ADD VECTOR CONTRIBUTION OF EACH TOWER.

Fig. 8-4. Finding pattern of any array.
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Inasmuch as we are only interested in the relative
contribution of each tower, we can simplify the equation
somewhat by dividing through by the field intensity from the
reference tower. giving us

IE=120+0.92100 + 092 100

The first step is to draw the vector corresponding to the
first term on the right side of the equation. For convenience we
will arbitrarily let 1 in. correspond to a relative field intensity
of 1. The angle is zero, so we draw a 1in. line from the origin to
the right. as shown in Fig. 8-3A. Next, at the end of this vector,
we draw another vector. corresponding to the field intensity
from tower 2. The relative field intensity from tower 2 is 0.9 so
we make this line 0.9 in. long. The phase angle is 244°, and we
consider a positive angle to be a counterclockwise rotation.
Therefore, with a protractor, we draw 0.9 in. line from the tip
of the first vector at an angle of 100°, as shown in Fig. 8-5B. The
final step is to draw the vector for the field intensity from
tower 3. This is a 0.9 in. line, drawn from the tip of the second
phasor at an angle of —100° from the reference axis. The
negative sign means that the angle is measured in a clockwise
direction.

The field at 30° is the resultant of the three vectors and is
labeled E in Fig. 8-5C. By studying this vector diagram, we can
not only determine the field at 30°, we can see just how the
fields from the individual towers combine to form the desired
field intensity. A vector diagram of this type can be drawn for
each azimuth angle of interest. It is a good idea to prepare
such a diagram for at least the angles on which the stations
licensed monitoring points lie. With these diagrams available
the engineer can to some extent determine just how each of the

=

Eq

Eq
(B8

Fig. 8-5. Vector contribution from each of three towers.
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parameters of the system influences the field intensity at each
of the monitoring points. Then, with this information he can
plan the adjustments in advance and avoid a lot of cut-and-try
operations.

Contribution of Various Tower Currents and Phases

In a 2-tower array a change in the amplitude or phase in
either of the towers has an equal effect at any point, as long as
the currents are equal. When an array has three or more
towers, the effect of each of the towers is not equal at all
bearings. In any case, a vector diagram can show just how a
change in any of the tower currents or phases will affect the
field intensity at the bearing for which the diagram was
drawn.

Figure 8-6 shows a vector diagram for a 3-tower array.
This particular diagram was drawn to show the field intensity
in a partially filled null. By studying the figure, we can learn a
great deal about the factors that affect the field intensity on a
particular radial. First of all, we can see how making the
current in tower 2 smaller than the other two currents fills in
the null. If the vector corresponding to E, were as long as the
others, the tail of the last vector would land right on the
starting point, indicating a field intensity of zero. By making
the vector for E, a little shorter than the others, we can avoid
complete signal cancellation in the null.

E3=1.0/120°

—120°_g,=0.7/31"
31

[ &
'\ / Eq1=1.00%
‘/ ! Fig. 8-6. Analysis of contributions
RESULTANT FIELD to field intensity at any point.

We can also see from the figure how the phases of the
currents in towers 2 and 3 affect the resultant field intensity.
Lets start with tower 2. If the phase angle was a little smaller,
the effect would be to raise the tail of the final vector closer to
the origin. Hence reducing the phase angle of tower 2 would
reduce the length of the resultant. In other words, it would
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reduce the field intensity in the null. If we were to increase the
magnitude of the current in tower 2, we would raise the tail of
the final vector, thus reducing the field intensity in the null.

This type of vector diagram is probably more useful to the
broadcast engineer than any other mathematical tool except
his calculator. By constructing such diagrams for each radial
that has a monitoring point, he can gain a great deal of insight
into how the various adjustments of the phasor will affect the
field intensity at each of the monitoring points.

Three Nonaligned Towers

Whenever the towers in a directional-antenna array are in
astraight line the field will be symmetrical about the line. This
is a great convenience when we are computing the radiation
pattern because we only have to compute the pattern on one
side of the line of towers; the other half of the pattern will be
the same. Unfortunately, it isn’t always possible to obtain the
pattern required for a particular station location with an
in-line array. The requirements for protecting other stations
and providing service to the primary service area may well
call for a radiation pattern that is not symmetrical at all. This
type of pattern is obtained by using towers that are not in line.

Figure 8-7 shows an unsymmetrical pattern produced by a
3-tower array in which the towers are not in line. This
arrangement is often called a dogleg array.

Once we know the parameters of the array, we can
compute the field intensity along any radial or the entire
pattern, using the same techniques as for a 3-tower in-line
array. Where ¢ is the azimuth angle, we can write the vector
equation for the array of Fig. 8-7 by inspection.

E=120°+ 13 [135cos ¢ + 225° + 0.9 [135cos (135° — ¢)

To keep things simple, we will only consider the shape of the
pattern from this array. We will therefore let the field intensity
from the reference tower equal 1. Solving the preceding
equation for each 10° gives the table of field intensities in Fig.
8-7. Note that when the towers in the array are not in line, the
pattern is not necessarily symmetrical about the line of
towers. We must, therefore, compute the pattern all around
the antenna, not merely for one half as we did with the in-line
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Ep=1.3/225

Ey-tom adfw  S2=1%8
135"  §5=135
E3=090
6 135(cose) + 225°  135cos(135° ¢ 6) E
10 358 -77 27
20 352 -57 2.9
30 342 -35 3
40 328 -12 34
50 312 +12 29
60 293 35 23
70 27 57 16
80 248 7 0.8
90 225 95 00
100 202 1 0.6
110 179 122 22
120 158 130 14
130 138 134 16
140 122 134 18
150 108 130 19
160 98 122 21
170 92 1 22
180 90 95 24
190 92 77 25
200 98 57 24
210 108 35 22
220 122 12 18
230 138 —12 11
240 158 -35 05
250 179 57 08
260 202 -7 14
270 225 -95 18
280 248 -1 21
290 27 —122 21
300 292 -130 21
310 312 —132 20
320 a28 —134 20
330 342 -130 20
340 352 —122 20
350 358 -1 22
360 360 -g5 24

Fig. 8-7. Three tower dogleg array with pattern and data.
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towers. We can now plot the pattern of this array as shown in
Fig. 8-7. Note that there are nulls at azimuth angles of about
90° and 240°. The 240° null is partially filled. The main lobes of
the pattern are not symmetrical, hence most of the population
of the primary service area would be located north and south
of the station site.

The null at 90° is very deep. It would probably be hard to
keep the field intensity along this radial within the licensed
value. This would be a good radial on which to construct a
vector diagram to see just how the magnitude and phase of
each of the tower currents contribute to the field intensity.
Figure 8-8 shows such a vector diagram, constructed by
drawing a vector of the proper length and angle for the field
intensity from each tower along the %0° radial. Assuming that
one tower of the 3-tower array is located at the
space-reference point of the array, both the spacing and
angular orientation of the two other towers can be varied by
the designer. In addition, the relative magnitude and phase of
the two other tower currents can be varied. This permits an
extremely large number of patterns to be obtained by design.
By the same reasoning, an engineer attempting to merely
adjust the array can also produce a wide variety of
patterns—none of which may be the one that he is trying to
obtain. If vector diagrams are drawn to show how the phase
and amplitude of each of the tower currents contribute to the
field intensity at various points in the pattern, the adjustments
will be easier to make. A diagram of this type should be
constructed for at least each of the monitoring points specified
in the station license. Of course, there will always be some
interaction between controls that can't be predicted in this
way.

RESULTANT Fig. 8-8. Vector diagram for field

intensity along 90° radial of array
of Fig. 8-7.
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Azinutl Pattern A Pattern 8 Pattern C
10 -200 1 -1
20 —200 1 1]
30 --1.96 1 —.96
40 -1.87 1 - .87
50 -1.69 1 -.69
60 ~1.41 1 -4
70 -1.02 1 -.02
80 -054 1 0.46
90 0.0 1 1.00
100 0.54 1 1.54
110 1.02 1 202
120 1.41 1 2.41
130 1.69 1 2.69
140 1.87 1 287
150 1.96 1 2.96
160 1.99 1 299
170 200 1 3.00
180 2.00 1 3.00
190 2.00 1 3.00
200 1.99 1 2.99
210 1.96 1 2.96
220 1.87 1 287
230 1.69 1 2.69
240 1.41 1 2.41
250 1.02 1 2.02
260 0.54 1 1.54
270 0.00 1 1.00
280 ~0.54 1 0.46
290 -1.02 1 0.02
300 -1.41 1 ~0.41
310 ~1.69 1 -~ 0.69
320 -1.87 1 -0.87
330 ~1.96 1 -0.96
340 -1.99 1 -0.99
350 -2.00 1 -1.00
360 - 200 1 -1.00

Fig. 8-9. Synthesis of pattern by addition.

SYNTHESIZING A PARALLELOGRAM ARRAY

In one 4-tower array the towers are located at the corners
of a parallelogram. The pattern of this array is obtained by
combining the patterns of two 2-tower arrays that are oriented
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Fig. 8-10. Null filling in 3-tower ar-
ray.

at different angles. Frequently very complex patterns with
many nulls are formed in this way. Each of the two arrays has
a tower spacing greater than 180° so each pattern will have
more than two nulls.

Parts A and B of Fig. 8-11 show two 2-tower arrays plus
their patterns. In Fig. 8-11C the two patterns are added
together to form a very complex pattern.

This procedure of adding towers to an array to provide a
more intricate pattern can be used to provide just about any
type of pattern. A fifth or even a sixth tower can be added to
the array of Fig. 8-11 to further change the pattern.

PATTERN SYNTHESIS BY MULTIPLICATION

One common method of synthesizing a desired pattern is
to multiply two patterns together. Parts A and B in Fig. 8-12
show the patterns of two 2-tower arrays. If the two patterns

% oo
B

(A) 8 ©

Fig. 8-11. Addition of 2-tower patterns to form a 4-tower parallelogram.
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Fig. 8-12. Multiplication of patterns to synthesize a4-tower array.

are multiplied together, the pattern of Fig. 8-12C results. Since
0 multiplied by any number is still 0, the resultant pattern will
have all of the nulls of the component patterns. If both of the
component patterns have negative lobes in the same direction,
the resultant pattern will have a positive lobe in this direction,
since the product of two negative numbers is a positive
number. The mathematical development of the resultant field
intensities is rather lengthy and thus will not be given here.
The multiplication method has been used frequently in the
design of 4-tower parallelogram arrays because of its
simplicity. If a station is required to protect the service areas
of other stations in four different directions, one 2-tower array
can be designed with two nulls and oriented so that it will
provide the desired protection in two directions. Then another
2-tower array can be designed to provide protection in the two
remaining directions. Finally, the two patterns can be
multiplied together to form a 4-tower parallelogram array.

Losses from High-Angle Radiation

A directional-antenna system is designed so that
high-angle radiation is minimized and radiation along the
surface of the earth is maximized. This increases the field
intensity in the primary service area. Depending on the
design, the rms field from an array may be either greater or
less than the rms field that would be produced by one of the
towers radiating the same amount of power. The antenna gain
is a measure of the increase or decrease of radiation along the
surface of the earth. If the gain is greater than 1, the array will
have a greater rms field than would be produced by one of the
towers radiating the same amount of power.
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The gain of an array is a theoretical consideration and has
nothing to do with losses in the system. It is defined by the
equation

E,*?
G =——
E,
where
G, = power gain inhorizontal direction
E, = rms horizontal-field intensity when array is radiating
full power
E, = rms horizontal-field intensity that would be produced
with reference tower radiating all of the power

The gain is inherent in an array’s design. Some systems have
gain over the reference tower, but others have a loss.

DIRECTIONAL-ANTENNA EFFICIENCY

To completely describe the performance of the array, we
must introduce another term—the efficiency of the
array—which takes into consideration the losses in the system.
The efficiency 7 is defined by the equation

P,
Pr + Pl

17:

where P, = power actually radiated insystem
P, = power lost or dissipated in system, expressed in
the same units as P,

Losses in System

The efficiency of a directional antenna is related to the
rms field intensity by the equation

Ey,
Eq

17:

where E, = rms horizontal-field intensity excluding losses
E,. = rms horizontal-field intensity including losses

One design objective is to keep the efficiency as high as
practicable by reducing losses in the system. Another is to
reduce losses from high-angle radiation.
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Chapter 9

Directional=-
Antenna impedances

#

To feed energy to each of the towers of a directional-antenna
system with a minimum amount of reflection, the driving-
point impedance seen looking into the base of each tower must
be matched to the characteristic impedance of the
transmission line. Before this can be done, the driving-point
impedance of each tower must be known. In Chapter 6 the
driving-point impedance of a single tower was seen to depend
only on the physical characteristics of the tower and, to some
extent, on the ground system. Once the impedance of a single
vertical tower is found, it ism’t likely to change unless
something goes seriously wrong.

When a tower is used as an element of a directional-
antenna array, its driving-point impedance usually will not be
anything like what it would be if the tower were acting alone.
Furthermore, the driving-point impedance changes with the
magnitude and phase of its current and the currents of the
other towers in the array.

Before going into the details of the impedances found in
directional-antenna systems, let’s briefly review just what
impedance is. Impedance is always the ratio of a voltage to a
current. A driving-point impedance between two terminals,
such as between the base of a tower and the ground system, is
the ratio of the voltage across these terminals to the current
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flowing in them. Usually the voltage and current will not be in
phase, so the impedance will be a vector or complex quantity.

In a directional-antenna system we are interested
primarily in the current in each of the towers. We adjust the
networks in the system so that the tower currents have the
proper magnitude and phase, and we let the voltage fall where
it may. We are interested in the impedance at the base of each
tower because we wish to minimize reflections on the
transmission lines and to control the phase shift in the
matching networks.

To understand the driving-point impedance at the base of a
tower, we must understand the factors that control it. We can
consider the base connections of two towers of a directional
antenna as being two sets of terminals of a network like that in
Fig. 9-1. The equation for the driving-point impedance is

Z, =2, +L /1, Z;

where Z;, = self-impedance of tower
Z,, = mutual impedance
I, . I, = currentintowers1&2

211 =242 222 — 243

'1 —— '2 —_—
212 Fig. 9-1. Self-impedance and
mutual impedance.

o— 4 —o

The first term of this equation, Z, , is the self-impedance
of the tower. It is what the driving-point impedance would be if
there were no other towers close by. The second term consists
of the ratios of the base currents in the two towers and the
mutual impedance between them. The mutual impedance is
often a source of confusion, so we will spend a little time
looking into it.

MUTUAL IMPEDANCE

Whenever current flows in a transmitting tower, a voltage
is induced in other towers nearby. This complicates the
problem of feeding energy to the towers of an array
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considerably. The ratio of a voltage induced in one
antenna—say, tower l1—by the current flowing in another
antenna, tower 2, is the mutual impedance between the two
antennas. Because the system is linear and bilateral, the
mutual impedance is the same regardless of which antenna
carries the current and which has the induced voltage. The
computation of mutual impedance is a mathematical
nightmare. Furthermore, mutual-impedance computations
are not always accurate. The designer of a system often makes
measurements to verify his mutual-impedance computations.

Fortunately, the average broadcast engineer will never be
called on to actually compute the mutual impedance between
two towers. He should, however, have some idea of what
mutual impedance is and how it affects the operation of an
antenna system. There are several things we can determine
about mutual impedance without actually computing it.

There is no easy way to find the mutual impedance
between two antennas; the mechanism by which energy is
coupled from one antenna to another is rather complicated.
One thing that we can do to help the situation is to redefine the
self-impedance of a tower slightly. We can consider the single
tower as a device to which we furnish a current and we can
think of this current as being the cause of anything that
happens in the tower. This is a little different point of view
than we normally have, because in circuit theory it is
customary to think of voltage as the cause and current as the
effect.

If we think of the current in a tower as the cause, we can
think of the voltage along the tower as being an induced
voltage that results from the current. Thus the self-im-
pedance of a tower becomes the ratio of the voltage induced in
it to the current that causes the voltage. With the aid of this
definition, we can see that if we moved a second tower
extremely close to a driven tower, the voltage induced in the
second tower would be very nearly the same as the voltage
induced in the driven tower. Hence, in this extreme case, the
mutual impedance between the towers would be the same as
the self-impedance of either tower (assuming that they are
identical in construction).
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As we move a second tower away from a driven tower, we
can safely assume that the induced voltage will be less. We
also know that the field will take some time—although an
extremely small amount of time—to get from the first tower to
the second. Thus there will be some phase shift between the
voltage induced in the driven tower and the voltage induced in
the second tower, and the mutual impedance will be a vector
or complex number. If the induced voltage in the second tower
depended only on the radiation field of the first tower, things
would be easier. Unfortunately, there is a great deal of
coupling between the induction fields of the two towers. The
induction field depends heavily on the actual physical
configuration of the towers and is not easy to anticipate.

Some idea of the magnitude and phase of the mutual
impedance between two towers can be gained from Fig. 9-2.
There we have a plot of the resistive and reactive components
of mutual impedance between two 90° antennas versus the
spacing between them. Some mathematical difficulties were
avoided by assuming that the antennas were infinitely thin and
that the current distribution was sinusoidal. Thus, the curves
cannot be applied directly to practical towers, but they do give
ageneral idea of how mutual impedance behaves.

The first things that we notice about the curves is that both
the resistive and reactive components seem to be nearly

+40 =
+30—
+20 R

+10 —

OHMS

0 —

—10 -

- 20

-30 T T T T T T T T
100 200 300 400 500
SPACING IN DEGREES
Fig. 9-2. Mutual resistance and reactance between two 90° towers.
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periodic, and for some values of spacing they are negative.
This isn’t very upsetting in the case of the reactive component.
Negative reactance is capacitive reactance, and that the curve
varies between positive and negative values means simply
that the reactive part of the coupling between the two antennas
may be either inductive or capacitive, depending on the
spacing between them.

That the resistive component of the mutual impedance
becomes negative for some values of antenna spacing tends to
be disconcerting at first. Actually, a negative resistive
component merely means that at some spacings the phase of
the induced voltage has changed 180°. Inasmuch as the phase
of the induced voltage depends on the spacing between the
antennas, it is understandable that it should be negative at
some spacings. In fact, the magnitude of the mutual
impedance would be nearly periodic except that the resistive
and reactive components do not reverse polarity at the same
spacings.

Another factor of interest in the curves of Fig. 9-2 is that
the magnitude of both the resistive and reactive components of
the mutual impedance tends to become larger as the two
antennas are placed closer to each other. This is logical,
because when the two antennas are closer together, more
energy is coupled from one to the other.

When two towers are of equal height we can simplify the
situation somewhat, because the magnitude of the mutual
impedance at any given spacing is directly proportional to the
radiation resistance of each of the towers. The constant of
proportionality is a function of the spacing between the
antennas, as is the angle of the mutual impedance. Figure 9-3
shows a plot of the ratio of the magnitude of the mutual
impedance to the radiation resistance R, of the towers. This
plot is based on infinitely thin antennas, but is usually within
about 5% of the actual value. Also shown in the figure is a plot
of the angle of the mutual impedance as a function of tower
spacing. The angles are not as accurate as the ratios, because
the reactive component of the mutual impedance is dependent
on the induction fields of the antennas. The curves are
nevertheless close enough for the average broadcaster’s use.
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SPACING IN
DEGREES
In practice, mutual impedance is often measured in
addition to being calculated. Once it has been measured, it
rarely will change very much unless radical changes have
taken place in the system. Usually, anything that changes the
mutual impedance between two towers will also change the
current distributions along the towers. This type of change
might be a change in guy wires or some fault in tower-lighting
lines. Changes of this sort can usually be detected from
base-impedance measurements, particularly when they are
made at more than one frequency. Whenever any change is
noted in base impedances, the ground system is also suspect.

DRIVING-POINT IMPEDANCE

The impedance that we are most interested in when
dealing with a directional-antenna system is the driving-point
impedance at the base of each tower. This is the impedance
that we must match to the characteristic impedance of the

transmission line. The equation
Z, =2, +1, /1, Zp
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for driving-point impedance, shows the various things that will
influence the magnitude and angle of this impedance. One
factor that will have a constant influence is the self-impedance
of the tower. This depends only on the physical characteristics
of the tower itself, and not on currents in the system. The
second term of the equation causes all of the problems. There
are several things that we can deduce about the influence of
this term without bothering to put numbers into the equation.

In a wide-spaced array the mut.al impedance is small,
and there will not be as much interaction between towers as in
a close-spaced array, where the mutual impedance is large.
Also, if the second term of the equation is large, it will have a
pronounced effect on the value of the driving-point impedance.

The examples and equations given so far have been
concerned only with the driving-point impedance of a 2-tower
array. In many directional-antenna systems there are more
than two towers. The driving-point impedance seen looking
into the base of a tower in a multitower array is given by

I I

L
Z 1 I 2 + T 13 I,

Z; + ...I—"Zm + ..
I

This is the same type of equation presented earlier,
expanded for systems of any number of towers n. All of the
mutual impedances between the tower of interest and each of
the other towers, as well as the magnitude and phase of each of
the other tower currents, have an influence on the
driving-point impedance of each tower in the system. The
amount of influence depends on the relative size and phase of
each term in the equation.

This is obviously a rather complex state of affairs. There
are now so many different parameters that influence each
driving-point impedance that it can take on nearly any value.
The driving-point impedance of each tower can be calculated,
although the calculations tend to be tedious. We will consider
these calculations later in this chapter. Here we are concerned
with the general values that the driving-point impedance
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might have, as well as the physical significance that it might
have.

Before transforming the driving-point impedance of a
tower to the characteristic impedance of a transmission line,
we first tune out the reactive component as shown in Fig. 9-4.
If the reactive component of the driving-point impedance is
inductive, the tuning reactance in Fig. 94 will be capacitive;
similarly, if the reactive part of the driving-point impedance is
capacitive, the tuning reactance will be inductive. Thus, as far
as the impedance-matching network is concerned, we are only
interested in the resistive part of the driving-point impedance.
The reactive part will be tuned out. The resistive part is what
is transformed to the characteristic impedance of the
transmission line.

TUNING I DRIVING-POINT

REACTANCE; IMPEDANCE
*jX

]

|
I EiX

MATCHING |
NETWORK iR

[

!

|

|

Fig. 9-4. Reactive part of driving-point impedance is tuned out.

This doesn’t mean that the reactive component of a
driving-point impedance isn’t important; it is. If the reactive
component is very large compared to the resistive component,
as it is in the case of very short towers, the impedance will be
hard to match, and the arrangement will tend to have a very
narrow bandwidth.

The resistive part of the driving-point impedance of a
tower might have almost any value—positive, negative, or
even zero. The positive resistance is easy to understand. It is
simply the ratio of voltage to current at the output of the
impedance-matching network. A positive resistance means
that energy is flowing into the tower and is not returning.
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Negative Resistance

It is easy to see how the resistive part of the driving-point
impedance may be negative. In fact, in arrays containing four
or more towers, the driving-point impedance of one or more of
the towers is negative much more frequently than the average
broadcast engineer would wish. The biggest trouble with
negative driving-point resistances is the confusion that they
usually produce in the mind of the engineer. Most of the
impedances that he works with are positive, and there seems
to be something mysterious about a negative impedance or
resistance.

Figure 9-5A shows a ‘‘black box’ with the voltage and
current at its terminals. Using Ohms’s law, we decide that
whatever is in the box is equivalent to a 20-ohm resistor.
Because of the polarity of the voltage and the direction of
current, we know that energy is flowing into the box.

In Fig. 9-5B we have a similar box with the same
magnitudes of voltage and current, but the direction of current
has been reversed. Again applying Ohm’s law, we decide that
whatever is in the box is equivalent to a 20-ohm resistor; but
because of the polarity and current direction, we conclude that
the resistance is negative. This merely means that the energy
is flowing out of the box instead of into it.

r= Y _ . 200Hms r= 2% _ _s00HMs
+05A o5
_— [ S—
1=05 =05
¥ ¥
E=10 R=+20 E=10 R=—20
ENERGY FLOW —e «——ENERGY FLOW
(A) (B)

Fig. 9-5. Positive and negative driving-point resistances.

The concept of negative resistance will be a little clearer if
we look at a block diagram of a somewhat simplified
directional-antenna system (Fig. 9-6). Here all of the energy
comes originally from the transmitter. It does not, however,
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flow directly through the system to the far field. As we saw
earlier, some of the energy from each of the towers is coupled
to each of the other towers. In two of the towers in the figure,
more energy enters the tower through the network than is
picked up from the other towers. Thus the impedance at their
bases is positive and energy is flowing into them. With the
third tower, however, the situation is just the opposite. Here
the current is flowing out of the tower rather thaninto it so the
sign of the resistance is negative.

/ N

POSITIVE POSITIVE NEGATIVE
RESISTANCE RESISTANCE RESISTANCE

Fig. 9-6. Energy flow into a negative-resistance tower.

One source of confusion regarding negative resistance is
that only a driving-point resistance can be negative. Figure 9-7
shows two boxes connected together. From the voltage and
current between them, we can conclude that the impedance
seen at the input of the second box is a resistance of 20 ohms.
Now suppose that the box does in fact contain a 20-ohm
resistor, and nothing more, as in Fig. 9-7B. Then, no matter
what happens to be in the first box, the impedance seen at the
input of the second box will always be a 20-ohm resistance. The
reason is that, in this special case, the driving-point impedance
seen looking into the second box is also the self-impedance of
the 20-ohm resistor. If the second box contained a source, such
as a battery, its driving-point impedance would depend not
only on what was in the box but on what was connected across
its terminals.

Figure 9-7C shows the same two boxes, but this time with
batteries and resistors. The impedance measured at the input
of the second box is still 20 ohms. If we were to specify this
same impedance looking back into the first box, it would still
be 20 ohms, but the sign would be negative because energy is
flowing out of the first box. The magnitude of the resistance
depends on the voltages of the batteries in both boxes, as well
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as on the values of the resistors they contain. Thus a
driving-point impedance is merely the ratio of a voltage to a
current at the input of anetwork or circuit or at the base of a
tower. Its magnitude depends on what is connected to it. Its
sign depends on the direction in which energy is flowing. There
is no point in asking what we are measuring the resistance of
when we specify 20 ohms in Fig. 97C; we are merely
specifying the ratio of a voltage to a current. Its value depends
on many factors. The same is true when we specify the base
impedance of a tower in a directional-antenna system; we are
merely specifying a ratio of the voltage to the current at the
base. The value of this ratio depends on many different things,
including not only the self-impedance of the tower but also the
mutual impedances to other towers, as well as all of the
currents in the system. Again, if the base impedance is a
negative number, this merely means that energy is flowing out
of a tower instead of into it.

Zero Resistance

From our equation we can see that not only may the
resistive part of the driving-point impedance of a tower be
positive or negative, it may very well be zero. Zero resistance
is probably even more confusing than negative resistance.
What does it mean? If the resistance between two terminals in
a circuit is zero, then we have a short circuit, and in general it
isn’t advisable to apply any voltage at all to a short circuit.
Perhaps we can get a better idea of what a zero driving-point
resistance means by writing an equation for it,

I
0=2, +—12,

I
Inspection of the above equation shows that what it really
means is that no voltage at all is required to make the current
L flow. Although this situation is impossible in passive
circuits employing only real resistors, it is not at all
uncommon in antennas. It means that the element whose
driving-point impedance we are considering is parasitic; the
current is caused by the voltage induced in the element by the
currents in the other elements of the array. All we have to do is
to short its terminals, and the proper amount of current will
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Fig. 9-7. Driving point resistances discussed in text.

flow to make the element behave as it should. This is true of
the directors and reflectors in a Yagi antenna.

At first glance, it might appear that a zero driving-point
impedance would be desirable. It would save on transmission
lines. All that we would need at the base of the tower would be
a network to tune out the reactance. In general, however, the
practice isn’t followed in broadcast-antenna systems. The
reason is that even the slightest change in the parameters of
the system will make the driving-point impedance go either
positive or negative, changing the parameters of the feeder
system. Usually, whenever it is possible, the use of towers that
have a very low or zero driving-point resistance is avoided.
When such a tower is unavoidable in the design of an array, it
is quite common to add some series resistance at the feed
point. This will introduce some loss into the system; but
usually there isn’t much power fed to such a tower, and the
improvement in the system is well worth the additional loss.

244



COMPUTING DRIVING-POINT IMPEDANCE

The actual computation of a driving-point impedance has
traditionally been considered a very tedious operation. It is
necessary to convert several impedances from polar to
rectangular form and back again. Fortunately, with the
advent of a pocket calculator that will handle vector addition,
this in no longer necessary. This capability alone will make the
calculator a very worthwhile investment for the broadcaster
who is involved in the computation of driving-point
impedances.

Let us consider as an example a 2-element array that has
the following parameters:

Zy =25+ j40 — =0.9 ,L100°
Z, =20—jl5 I

The first step is to express everything in polar form as follows:

1 =47L.i8i I
Zy =47 /58 — =0.9,100°
Zy =25, =37° L

Now we can proceed to compute the driving-point impedance
of tower 1 by the equation

Substituting numbers into this equation gives us

Z, =47 ;58 + 0.9 £100° + 25 . =37°

Z, =47 .58 + 22.5 £ 63°

2, =65,.60°
Now we convert back to rectangular form and find the
driving-point impedance of tower 1 to be

= 35.12 +j60 ohms

We can find the driving-point impedance of tower 2 similarly.
The only difference in the two equations is in the second term;
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the ratio of the currents is now 1.11 instead of 0.9. Hence we
have

I
Z, =Zn +I—'Z,2
2

Z, =47,98° + 1.1 L =100° + 25 L =37°
Z, =47 /58 + 28 , —137°

Z, =22,.78
The driving-point impedance of tower 2 is thus
Z, =45+ j22

The computation of the driving-point impedances is
clearly just a matter of pressing a few keys on a calculator.
When more than two towers are involved, there are a few more
steps. but the process isn't at all difficult. In fact, if the
broadcast engineer would go through the steps, whether it is
necessary or not, he would gain a great deal of insight into just
how his antenna really works and what interaction between
ratio and phase controls to expect.
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Chapter 10

Impedance
Transformation

and Phase Shifting

N et e E—— e L Y ST G TR e S BT,

The average broadcast engineer finds the networks used in the
feeder system of a directional antenna confusing at best. Most
textbook treatments of networks are highly mathematical—
more so than is needed for maintaining and operating an
antenna system. The few nonmathematical treatments usually
make heavy use of graphs that are hard to understand and
even harder to interpret. The subject is actually more
unfamiliar than difficult. The small amount of effort required
to understand how the networks in a feeder system operate is
well worth while. The better an engineer understands how the
networks in his antenna system function, the less apt he is to
get in trouble while adjusting them.

In a directional-antenna system, networks are used for the
following purposes:

1. Impedance matching between various parts of the
system

2. Phase shifting

3. Power division

Unfortunately, the three functions listed above are not as
distinct as one might wish. Impedance-matching networks and
power dividers introduce phase shift. Probably the greatest
cause of difficulty in adjusting networks is the interaction that
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takes place between their controls. For example, when one of
the controls on a power divider is moved it might cause more
phase shift than power division. Once one is familiar with the
principles of network operation, this interaction can be
anticipated and will not be as formidable.

The subject of power division is treated separately, in the
next chapter.

IMPEDANCE-TRANSFORMING NETWORKS

At audio frequencies, impedance matching is usually
accomplished by a transformer. This impedance trans-
formation is easy to understand: Impedance is a ratio of
voltage to current, and a transformer changes this ratio.

At broadcast frequencies, impedance matching is
accomplished by reactive networks. Just how a reactive
network makes one value of impedance look like another value
is not always clear. We will approach the subject by means of
equivalent circuits. Once the concept of equivalent reactive
circuits is well understood, the action of various
impedance-transforming networks will fall logically into
place.

Equivalent Circuits

Figure 10-1A shows a ‘black box™ that contains only
passive elements such as resistances and reactances. By

o— %
Z2=25+ )25 j25
o—] o
® e
50 i50

? o
O ¢—VV\—¢

~

(

Fig. 10-1. Equivalent series and parallel circuits.
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means of an impedance bridge we find that the impedance
seen looking into its terminals is

Z = 25 + j25 ohms

Remember, this impedance is a property of whatever happens
to be in our box, and it tells us what the magnitude and phase
angle of the current will be if we apply a given voltage to the
terminals. Likewise, it tells us the magnitude and phase of the
voltage that would appear across the terminals if we forced a
given current through them. In other words, the impedance at
the terminals of the network is a measure of the ratio of the
voltage across the terminals to the current flowing in them.

Series and Parallel Equivalence

One thing the box might contain is the simple series circuit
shown in Fig. 10-1B, which consists of a 25-ohm resistance in
series with a 25-ohm inductive reactance. The important thing
to remember is that this isn't the only circuit that our box
might contain. For example, it might contain the circuit shown
in Fig. 10-1C, which consists of a 50-ohm resistance in parallel
with a 50-ohm reactance. On the surface these two circuits
don’t look at all alike, but a few simple calculations will show
that the impedance seen looking into their terminals is exactly
the same.

The impedance seen looking into the terminals of the
circuit of Fig. 10-1C is found by taking the product over the
sum, just as we would do with parallel resistors.

_ _50(j50)
50 + 50

We can rationalize the denominator by multiplying both the
numerator and denominator by the conjugate of the
denominator.

__50(j50) (50 — j50) _
TT50 + 50 (50 — j50)

50 (50 ) 4 j _50(50°)

. — - _ =25 + j250hms
50" + 50 507 + 50°
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Thus the impedance seen looking into the circuit, 25 + j25
ohms, is exactly the same as the impedance seen looking into
the series circuit of Fig. 10-1B.

This equivalence of series and parallel circuits is the basis
of all reactive impedance-transforming networks and must be
clearly understood. Stated differently, a resistance and
reactance connected in series look exactly like a different
value of resistance in parallel with a different value of
reactance. We can't tell the difference from any
measurements that we make at the terminals of the network.
This equivalence only holds true if we keep the frequency
constant: but this restriction won’t cause any trouble, because
broadcast stations operate at a constant frequency.

It doesn’t make any difference at all to us which circuit is
actually in the box of Fig. 10-1A. If we add the proper
reactance at the input terminals to tune out the reactance in
the box, we can make it look like either a 25-ohm resistance or
a 50-ohm resistance, depending on how much reactance we
connect at the input and how we connect it.

Figure 10-2A shows our black box with a 25-chm capacitive
reactance connected in series with it. The inductive and
capacitive reactances cancel, and the impedance seen looking
into the circuit is a pure resistance of 25 ohms.

g=——=(——1—"~

—)25
25 25
oO—
Fig. 10-2. Two values of pure re- (A)
sistance obtained from the same
black box.
- _T_ A
Z-50 150 50
o— > >
(B)
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In Fig. 10-2B we have the same black box, but this time
with a 50-ohm capacitive reactance in parallel with the input
terminals. Again the inductive and capacitive reactances
cancel, and the impedance seen looking into the box is a pure
resistance of 50 ohms.

This concept is apt to be confusing at first. Let’s go over it
again. In Fig. 10-3 we have two terminals between which we
measure impedance and find it to be 25 + j25 ohms. Let’s say
that we have no idea what is actually in the box. It might be
either the series or the parallel circuit that we have
considered. Or it might be neither of these; it might be the
impedance measured across the base insulator of a tower. In
this case, the resistance and capacitance are actually
distributed along the tower, and one equivalent circuit is as
good as the other. We might tend to think of the circuit in A of
Fig. 10-3 as being more “‘real”” than the one in B. But if we had
started out with an admittance bridge, we would have found
the admittance across the terminals of our box (Fig. 10-3B) to
be

Y = 0.02 — j0.02 mho

This is the equation for a 20 mmho conductance in parallel with
a 20 mmbho inductive susceptance. If we were to state this in
terms of resistance and reactance, it would represent a 50-ohm
resistance in parallel with a 50-ohm reactance.

o— o—
Z2=25 + |25 Y =0.02 - j0.02
o—
(A) (B)

Fig. 10-3. Equivalent impedances and admittances.

Again we see that it makes absolutely no difference what
the actual circuit in the box might be. We are only concerned
with what it looks like when viewed through its input
terminals, and it can be represented equally well by either its
series or parallel equivalent.
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We can now generalize our equivalent circuits and derive
simple equations that will enable us to find either circuit from
the other. Before we do this, we should note two things. First of
all, there is nothing sacred about the choice of inductive
reactance in the example we have been considering. The
techniques would work just as well if the reactance inside the
box were capacitive; we would merely use an inductive
reactance outside the box. In general, impedance-
transforming networks use both inductive and capacitive
reactance. Second, either a capacitive or an inductive
reactance will vary with frequency, so the series and parallel
circuits will only be exactly equivalent at one frequency. The
two circuits will be approximately equivalent over the
bandwidth of a regular broadcast signal, so we can use them in
broadcast networks.

Now let’s look at our equivalent series and parallel circuits
and see if we can use them to understand impedance-
transforming networks in general.

Conversion Between Series and Parallel Circuits

Figure 10-4 shows a series network and its parallel
equivalent. The parameters of the series network are
designated by an s, and those of the parallel network are
designated by a p. We can define the @ of the networks in the
conventional way. The Q of the series circuit is

X
Q=—
R,
and that of the parallel circuit is
- B
XP

Since the two networks are equivalent, they have the same
value of Q.

X R,

R, X
If the networks are to be equivalent, the impedance seen
looking into their terminals must be equivalent. The
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Xs - QRg
R R
S RS o}
Q2+ 1
o
(A)
R
o— ' P
X» o
X, Rp Rp=(Q2 -~ )Ry
O- y ) Q- ii E /2‘1
8) Rs X5 V Rg
R
2 Q2.1
RS

Fig. 10.4 Driving equivalent series and paralle! circuits.

magnitude of the impedance seen looking into the series
circuit is

Z, =R, +jX,
The magnitude of the impedance seen looking into the parallel
circuit is
z = R, (J?f,,)
R, +jX,

Now, inasmuch as our two circuits are equivalent by
definition, the impedances seen looking into them are also
equal. Hence

R, (jX,)
Z\. =Z X :R\. +.Xs =+L-
' . 0 O R, + jX,
We can substitute @ into this equation and simplify it, giving
LENS & +1
R,

This basic equation is all that we need to find one circuit when
the other is given.
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In Fig. 10-4 all of the equations relating the parameters of
the equivalent series and parallel circuits are summarized. We
can use these equations to design a network that will make any
value of resistance look like any other value of resistance as
far as we can tell by any measurements. In general. we use
one of two procedures.

1. If we wish to make the resistance at the input of a
network look larger than the resistance we have, we
add a reactance in series, then tune out the equivalent
reactance by adding a parallel reactance of the
opposite type. Thus, if we added an inductive
reactance in series with the existing resistance, we
would use a capacitive reactance to tune it out.

2. If we wish to make a resistance look smaller than it is,
we add a reactance in parallel with it, then a series
reactance of the opposite type to tune it out.

L-NETWORK

The circuits we have been using are actually L-networks,
circuits whose configuration resembles the letter L. By a
proper choice of components, such circuits can, in theory,
effect any impedance transformation desired. We will see a
little later that there are practical limits to the
impedance-transformation ratio that we can use in broadcast
work.,

We will start our consideration of uses for L-networks by
transforming one value of resistance into another. Later we
will consider cases where the impedance is not a pure
resistance.

Impedance Transformation by the L-Network

Suppose, for example, that the impedance at the base of a
tower is a pure resistance of 10 ohms and that we wish to feed
the tower with a 50-ohm transmission line. For maximum
power transfer and minimum reflections, we want a network
that will transform the impedance of the tower to a pure
resistance of 50 ohms. We will start by adding enough
reactance X; in series with the 10-ohm resistance (Fig. 10-5A)
to make it look like a 50-ohm resistance in parallel with a
reactance X, (Fig.10-5B).
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o— ~

10 = Xp 250

o— O— &
(A) B)
Fig. 10-5. Making a load resistance look larger.

The next step is to find the Q of the network, which is given

by

It is important to note that the Q of the network is determined
entirely by the impedance-transformation ratio. Once we
decide on the desired ratio, the @ of our network is established
and there is nothing we can do about it. This has some rather
important implications and puts a limit on the impe-
dance-transformation ratio that we can get in a practical
network.

The equivalent series reactance required in Fig. 10-5A is
given by

X, = R,Q =10 x 2 = 200hms

The effective parallel reactance of the equivalent circuit of
Fig. 10-5B is

X, =

Now we can represent the network we are building by the
circuit on the left in Fig. 10-6A. The circuit on the right is
equivalent to our network. We can take advantage of this
equivalence by adding a 25-ohm capacitive reactance across
the terminals of the network (or across the 25-ohm inductive
reactance of the equivalent circuit), as shown in Fig. 10-6B,
canceling out the reactances but leaving us with a resistance
of 50 ohms across the network terminals. We have thus
transformed a 10-ohm resistance into a 50-ohm resistance with
an L-network.

il
Q
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o— ~
Z=10 + j20 10 = Z2=10 + j20 (|25 50
O (o &

Fig. 10-6. Tuning out inductive re-
actance (A and B) by adding a
B capacitive reactance (C).

Now, for another example, suppose that we have a
resistance of 100 ohms and wish to transform it into a
resistance of 50 ohms (see Fig. 10-7). Inasmuch as we know the
required impedance-transformation ratio, we can determine
the required @ of the network.

100
o=V -1 =V _
R 50
Now, since we are trying to lower the impedance, we will
connect a reactance in parallel (Fig. 10-7B). The value of the

parallel reactance is given by
X, = — = —— = 100 ohms

We could use either type of reactance, but we will use
capacitive reactance this time. Now we have to find the value
of capacitive reactance in the equivalent series circuit of Fig.
10-7D. It is given by

X, = R, Q =50 x 1 =3500hms

This is the value of capacitive reactance that we must tune out
of our circuit to have an impedance that is a pure resistance.
Hence we will use an inductive reactance of 50 ohms for tuning
out the reactance. Our final circuit is shown in Fig. 10-7E. In
this case, we transformed a 100-ohm resistance into 50 ohms.
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—o0 o—— o— 3
50 OHMS 2100 Xp 100
—0 o—— o- ’
(A) (B)
XS

(D)

100 Fig. 10-7. Matching a 100-OHM
load to a 50-OHM line.

Configurations of L-networks

Inasmuch as we can use either inductive or capacitive
reactance in our L-networks, there are two configurations that
can be used to transform impedance to a higher value (Fig.
10-8A and B) and two that will transform to a lower value (C
and D).

The choice of network configuration isn’t arbitrary; we
often take advantage of the characteristics of a particular
configuration. For example, the circuits of Fig. 10-8A and C act
as low-pass filters which tend to reduce harmonic radiation.
The circuits of Fig. 10-8B and D act as high-pass filters.
Although they are as effective as the others as far as
impedance transformation is concerned, they provide no
attenuation of harmonics.

There is still another consideration in the selection of an
L-network configuration. The circuits of Fig. 10-8A and C
retard the phase of the current, causing the current at the
output to lag the current at the input. The circuits of B and D
advance the phase of the current. Sometimes in a
directional-antenna system the choice of a configuration is
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Fig. 10-8. Possible L-network configurations.

decided by a need to introduce phase shift in a line going to a
particular tower.

Phase Shift in L-Network

The L-network is composed of reactive elements, which
store energy. and energy storage takes time. This, in turn,
means that there will be some phase shift in the network. Of
course, inasmuch as the input and load impedances are pure
resistances, the input current will be in phase with the input
voltage, and the output current will be in phase with the output
voltage. The phase angle exists between the input current and
the load current. or between the input voltage and the load
voltage.

The amount of phase lead or lag that is introduced by an
L-network is given by

1
= ol e
Y = COS o
where y = phase shift in degrees
r = ratioof R, to R, , or R, to R, whichever gives
r>1
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This shows that the phase shift, like the @ of the network, is
completely determined by the impedance-transformation ratio
r. Once we have selected an impedance-transformation ratio,
we have specified the phase shift that the network will
introduce, and there is little that we can do about it. We can
decide whether we want the phase angle to be leading or
lagging and select the network configuration accordingly, but
we can’'t do anything about the magnitude of the phase shift.
This is logical when we stop to think that in matching
impedances we have to handle the resistance and reactance
with the two variable circuit elements. We have nothing left to
vary to control the phase shift.

In nondirectional-antenna feeder systems phase shift isn’t
a problem. We have only one antenna and one transmission
line, and we don’t care how much phase shift is introduced by
our networks. With a directional-antenna array, however, we
care very much about the phase of the current feeding each
tower. There are many places in a directional antenna where
we can’t use an L-network, because we can't tolerate the phase
shift that it would introduce. This doesn’t mean that we can’t
use L-networks at all in a directional-antenna system. These
networks are, in fact, widely used where the phase shifts in the
entire directional-antenna system are such that the inevitable
phase shift in an L-network can be tolerated.

DESIGN OF L-NETWORK

The values of the reactive components of the generalized
L-network of Fig. 10-9 can be determined from the equations
given. By letting R, be the larger of the line or load

X4
[ |
- d
Fig. 10-9. Equations for design of
R, Xs Ry L-network.
r= By a= ! b=\r -1
Ry =1
R R
x1=:,_1 X»,_,::]—1 cosy = l_
a b \NT
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impedances and R, the smaller, the circuit of Fig. 10-9 can
represent any of the circuits of Fig. 10-8. Remember that the
shunt reactance is always directly across the higher
impedance.

It is convenient to express the values of the parameters of
the L-network in terms of the impedance-transformation ratio
r, which is given by

_R_l
R,

It is also useful to define two other network parameters, a and
b, in terms of the transformation ratio r. These two
parameters are given by

-
o= ———,b=Vr-1
V-1
Of course, these values can be computed easily with an
electronic calculator. In case a calculator with square-root

capability is not available, the curves of Fig. 10-10 give the

10 .

>
—

VALUE OF o

VALUE OF b

VALUE OF r
Fig. 10-10. Data for L-network design.
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values of a and b in terms of the impedance-transformation
ratior.
Knowing a and b, we can easily find the values of X; and
X, from the equations
. R, R
Xl = i‘] a Xz = +]) b
The =+ and F signs merely mean that if X, is an inductive
reactance, X, must be a capacitive reactance, and vice versa.
For example, if we wish to match a 10-ohm load to a 50-ohm
transmission line, we find from Fig. 10-10

a=25b=2
Therefore
X =i£ =J'£0-=j200hms
a 2.5
and
X, =—jﬁ =—j—5— = —j25 ohms
i b 2

This is the same example that is given in Fig. 10-4.

LIMITATIONS OF L-NETWORK

In practice, there is a definite limit to the impedance-
transformation ratio that we can obtain with a single
L-network without running into problems. One limitation of the
L-network is that it will introduce phase shift as mentioned
earlier, and there is nothing that we can do about it. If the
system won't tolerate the phase shift, we must use another
type of network.

Another limitation of the L-network is its bandwidth. Our
derivation of the L-network was based on the use of two
reactances, one capacitive and one inductive. The reactance of
any real inductance or capacitance changes with frequency, so
the inductances and capacitances in a real network exhibit
their design values of reactance at only one frequency. At
frequencies above and below the frequency for which the
network was designed, its performance deviates somewhat
from the ideal. For broadcast applications the signal
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transmission through the network must be reasonably
constant over the bandwidth of the transmitted signal,
otherwise sideband power will be lost.

In Fig. 10-11 the response of an L-network having a
low-pass-filter configuration is plotted as a function of
normalized frequency. The response at the design frequency is
given at 1.0 on the horizontal axis. At the point 1.1 is the
response at a frequency 10% higher than the design frequency;
at the point 0.9 is the response at a frequency 10% lower than
the design frequency.

1.0 <
r=2
0.5 = r=6
r=10
fg
)
I ¥ ) ] 1 1 1 i I

—1
05 06 07 08 09 10 11 12 13 14 15
Fig. 10-11. Frequency response of L-networks.

Each curve is for a different value of impedance-
transformation ratio. The curves show that the bandwidth of
the network becomes smaller as the transformatin ratio
becomes larger. Earlier we saw that circuit @ is given by

0=V> -1

R;

where R, /R, is equal to the transformation ratio. This
equation shows that a high impedance-transformation ratio
corresponds to a high value of circuit @, which we know means
restricted bandwidth.

The curves of Fig. 10-11 show that the sidebands of a
broadcast signal will be attenuated if the transformation ratio
is greater than about 10. Substituting this into the equation in
the preceding paragraph gives

Q=VIl-1=V9=3
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As a general rule, a single network is never used to obtain an
impedance-transformation ratio greater than 10:1, and the
circuit @ is kept to 3 or. less. Many problems in direc-
tional-antenna systems can be traced to using a single network
for an impedance-transformation ratio greater than 10.

The curves of Fig. 10-11 can be made to apply to
L-networks having a high-pass-filter configuration by simply
letting the numbers on the horizontal axis represent the design
frequency divided by the frequency of operation, instead of the
inverse. Then 1.1 will correspond to a frequency 10% below the
design frequency. In other words, the frequency scale will be
reversed.

THREE-ELEMENT NETWORK

The most serious limitation of the 2-element L-network is
that it introduces an amount of phase shift that depends on the
impedance-transformation ratio. Once the transformation
ratio is set, the amount of phase shift is set, and there is
nothing we can do about it. By adding a third reactive element
to our network, we can control the phase shift as well as the
transformation ratio.

The 3-element network is widely used to perform the
following functions:

1. Impedance transformation with arbitrary phase shift

2. Impedance transformation with specified phase shift

3. Control of phase shift without any impedance
transformation.

The 3-element network can take either of the forms shown
in Fig. 10-12. They are called T and pi networks because their

X4 X2 X3
—] -

X3 X4 X2

(A) T-NETWORK (B) PI-NETWORK
Fig. 10-12. T and Pi networks.
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configurations resemble the English letter T and the Greek
letter 7. For any desired impedance transformation, we can
use either type. In network theory we can show that for any
given T-network there is an equivalent pi-network, and vice
versa. As with the L-network, both inductive and capacitive
elements must be used. That is, if two of the elements are
inductive, the third must be capacitive.

Several combinations of reactive elements can be used to
make up T or pi networks, some of which are shown in Fig.
10-13. The 3-element network most commonly used in
broadcast work is the T-network in Fig. 10-13A. This
configuration is popular because it has the configuration of a
low-pass filter, and at broadcast frequencies and power levels,
variable inductances are more practical than variable
capacitances. The remainder of this discussion of 3-element
networks is based on this configuration, but the principles of
its operation apply to other possible configurations as well.

(A B)

14 1
[A) 1 )l
(@) (D)

Fig. 10-13. Three-element networks.

]

]

In practical networks all three reactances are made
variable. Variable capacitive reactance is obtained by
connecting a variable inductor in series with a fixed capacitor
as shown in Fig. 10-14.

Figure 10-15A shows two L-networks connected one after
the other. By replacing the two capacitive reactances X; ' and
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Fig. 10-14. Practical T-network
commonly used in broadcast-
antenna systems.

T
X; ' with a single capacitor having a reactance of
Ix L
X, = X X 7T
X3 ! + X3 L

we have the network of Fig. 10-15B. We can think of the
L-section nearest the load as transforming the load impedance
into some ficititious midpoint impedance Z, , which is higher
than both Z, and Z, . The second L-network transforms this
fictitious impedance down to the desired value of input
impedance Z,, .

Xy X2
O=YVY Y\, a fWY\_o

Z|N X3”% X3'_T[ Z
o- & & —0
Fig. 10-15. Derivation of T-
network.
XaT
(o

8

If phase shift isn’t important, we can design this network
just as we would design two L-networks. We have one extra
component value, which can be chosen arbitrarily.

Suppose we have the situation of Fig. 10-16, where we wish
to match an 8-ohm resistive load to a 50-ohm line. We must
make one arbitrary decision, so let’s make the @ of the section
closest to the load equal 2.5.
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We can immediately find the value of X, in the circuit by
simply multiplying Z, by @ as shown in the figure. The
midpoint impedance Z, can be figured as the effective
parallel resistance seen looking into the circuit. As shown, it
works out to be 58 ohms. The capacitance X’; of the L-section
closest to the load works out to be 23.3 ohms.

The rest of the problem consists of designing an L-network
to transform the midpoint impedance of 58 ohms into the
desired load impedance of 50 ohms. We first find the @ of this
network, which we will call @ , to be 0.4. Now we can find that
X, =20 ohms and X; '' = 145 ohms. By combining X; ' and
X; ' according to the rule of combining parallel reactances,
we find that X; is also 20 ohms.

We can find the phase shift through this network by adding
the phase shifts in the two L-sections.

1 1
cosy = = =0.37 = 68.2°
[ 8/58 N
oSy = —he = ——— Z 093 4 =28
Vv, V58/50

Y=y +7 =68.2°+ 218 =9

This tecnhique can be used to analyze an existing
T-network. The values of the elements of the network and the
load impedance can be found with an impedance bridge, and
the midpoint impedance can be computed. The phase shift
through the network can then be calculated by adding the
phase shifts of the two equivalent L-networks.

T-Network—90°

When all three elements of the T-network have the same
numerical value, as in Fig. 10-16B, the network has some very
interesting properties. In fact, it behaves very much like a
section of transmission line that is 1/4 wavelength long. The
common value of the three elements can be considered the
characteristic impedance Z, of the network. The input and
output impedances are related to the characteristic
impedance of the network by the equation
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ZOZ
Z

4, =

where Z; is the load impedance connected to one side of the
network, and Z, is the impedance that would be seen looking
into the other end of the network. This is exactly the same as
the equation relating the input and output impedances of a
quarter-wave transmission line. As in the quarter-wave line,
the output voltage and current lag the input voltage and
current by 90°.
Another way of stating the relationship expressed by the
above equation is to say that the characteristic impedance of
, the network is the geometric mean of the input and output
/ impedances. The geometric mean of two numbers is the

Q= V’%’ﬂ —1=|/= —1=04 Xo=R Q=8x25=200HMS
IN 0

Rm=RgQ2 + 1)=8(2.52 + 1)=
S 58 OHMS
Xg'= =2 =2 =1450HMS
Q 04
X3 =R Q= 58/2.5=23.20HMS

X1 =R gQ =(50)(0.4) = 200HMS

(A)
Xq=j20 X =20

Zin=50 TX3=‘]20 ZL=8
iy 23.2)(1450
Xg= XaXa" - (2300 _ 20 0Hms
X3' + X3' 23.2 + 145
(8

Fig. 10-16. Deriving a T-network from two L-networks.
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number that would be halfway between them on the C-scale of
aslide rule.

The 90° network is easy to design and adjust, because once
the load and input impedances are known, the element values
can be found easily.

For example, suppose that we wished to design a 9%0°
network to match an 8-ohm load to a 50-ohm transmission line,
as we did in Fig. 10-16. We can rearrange the above equation to
solve for the characteristic impedance, giving

L =Vi, Z,
Substituting values for Z, and Z, gives
Z = V(50)(8) = 20 ohms

Thus all three elements of the network have a reactance of 20
ohms, which is exactly what we found in Fig. 10-16. Either X,
and X, will be inductive and X; reactive, or else X, and X,
will be capacitive and X; inductive (see Fig. 10-17). The
network of Fig. 10-17A introduces a lagging phase shift of 90°,
whereas the network of Fig. 10-17B introduces a leading phase
shift of 90°.

The network of Fig. 10-17A can be seen to be the same
network we designed in Fig. 10-16 by letting the @ of the
L-section closest to the load equal 2.5. This example gives a
little additional insight into the operation of the 90° network. In
the next section we will see how the 90° T-network can be used
as a phase shifter.

Phase Shifter—90°

A very common 90° T-network is the so-called 90° phase
shifter of Fig. 10-18. In this T-network all three reactances as

X4 Xo

ot e
zan x3T 20 Zn T z,

(A) LAGGING NETWORK (B) LEADING NETWORK
X1=Xa=X3=20=V ZinfL
Fig. 10-17. Configurations of 90° T-networks.
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Xq = j50 Xo=j50

Z|N=50 X3=—j50I ZL=5(

Fig. 10-18. A 90° phase shifter.

well as the input and output impedances have the same
magnitude. Very frequently this value is 50 ohms and the
network is inserted in a 50-ohm transmission line.

By varying X; and X, , we can vary the phase shift of the
network over a range of +15° without disturbing the
magnitude of the output current significantly. In the most
common arrangement X, and X, are ganged to a single
control so that they can be varied simultaneously. In some
recent phase shifters only X, is variable; in most practical
systems, this arrangement will disturb the magnitude of the
load current more for a given amount of phase shift then when
X and X, are both variable.

The amount of phase shift, and the way the values of X,
and X, affect it, depend on the load impedance seen looking
back into the source. If the network were driven from a very
high impedance or a constant-current source, X; would have
no affect at all on the phase shift. If the network were driven
from a very low impedance or a constant-voltage source, X,
would have a large effect on the phase shift. In actual systems
the source acts as neither a constant-voltage nor a
constant-current source.

When the internal impedance of the source is equal to the
characteristic impedance of the transmission line, varying X,
alone produces a greater phase shift than when X, is also
varied, but it also produces a greater change in load current.
For a 15° phase shift the load current will change by about 4%.

When both X, and X, are varied, a greater change of
reactance is required to produce a given phase shift, but the
load current does not change nearly as much as when only X,
is varied. For a 15° phase shift the load current will change by
less than 1%.
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It is difficult to analyze the behavior of a phase shifter ina
practical system because its behavior is dependent on the
impedance that will be seen looking back from the input
terminals toward the transmitter. Although impedances are
usually matched throughout the feeder system the impedance
of the feeder system usually isn’t matched to the internal
impedance of the transmitter. The reason is simple: Although
the condition of matched impedance represents maximum
power transfer, it also represents the condition of 50%
efficiency. If the impedance of a feeder system were matched
to the internal impedance of the transmitter, half of the
available power would be delivered to the antenna, and the
other half would be dissipated in the transmitter. This is not a
desirable mode of operation.

Figure 10-19 shows a transmitter connected through a line
and a phase shifter to a load. The impedance is matched at the
load and at the input and output of the phase shifter. The
impedance is not matched at the input to the line leading from
the transmitter. Most transmitters operate most efficiently
when their load impedance is higher than their internal
impedances. Inasmuch as the line is not matched at the
sending end, the impedance seen looking back toward the
transmitter from the input to the phase shifter depends on the
length on the line. If the line is short compared to 1/4
wavelength at the operating frequency, the impedance seen
looking back toward the transmitter will tend to be lower than
the characteristic impedance of the line. The line will thus act
something like a constant-voltage source. If, on the other hand,
the line between the transmitter and phase shifter is about 1/4
wavelength, the impedance will be inverted and will be higher
than the characteristic impedance of the line, and the line will

XMTR

JMPEDANCE
’I\ MATCHED HERE

IMPEDANCE /_J7

NOT MATCHED HERE

Fig. 10-19. Phase shifter connected between transmitter and load.
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look more like a constant-current source. This uncertainty
about the value of the source impedance feeding a network has
no significant influence on an impedance-matching network,
but it does have an influence on the way a phase-shifting
network behaves.

GENERAL ANALYSIS AND DESIGN OF T-NETWORK

Network analysis and design are really two very different
problems. The engineer trying to understand how the networks
in a station operate analyzes the networks. That is, he starts
with the values of the elements of the network, which he finds
from a diagram or by measurements, and then determines the
magnitudes and phases of the input and output currents or
voltages. The designer, on the other hand, starts with the
desired magnitudes and phases of the input and output
currents, and then finds the values of the elements of a
network that will satisfy these requirements.

Xq1=j20 | | X2=j20

i j_ i

!
Zin=50 1 Xz=—20 8

1

: T '

] ]

Bl - Al

Z,=8 + j20 YA=002 - j0.04

Yg=0.02 + j0.01 Zg=50-j20
Fig. 10-20. Analysis of a T-network.

General T-Network Analysis

We will first consider the matter of analyzing networks.
Fig. 10-21 shows a T-network for which the values of all of the
reactances are given. The network is intended to match a load
impedance of 8 ohms to the characteristic impedance of a
50-ohm line. As far as the solution of the network is concerned,
it is a series—parallel network. So we have to combine
impedances in series and parallel. This is normally a rather
tedious procedure, but with a calculator that can handle vector

calculations, there really isn't much work to it.
In analyzing any network it is easiest to start at the load

and work back toward the source. In Fig. 10-20 we see that,
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11=04/90° IL=10[0°
. TV
+)20 +,20

Z2,,=50 _120 g inaT-network.

Ea=21.5/68.2
" T‘ 05 08158 20|

looking at the load in series with X, —that is, looking to the
right from line A, we have an impedance of

Z, =8 + j20 ohms
This is an admittance of
Y, =0.02 — j0.04 mho

The next element of the network is a capacitive reactance of
—j20 ohms. This is the same as a capacitive susceptance of
j0.05 mho. Since this element is in parallel with the other
admittance, we can add it algebraically to the susceptance of
the load; that is,

Y, =0.02 — j0.04 + j0.05 = 0.02 + j0.01 mho

To consider the last series element, it is convenient to convert
back to impedance.

Z; = 50 — j20 ohms
Adding the reactance of j50 gives us
Z =50 — j20 + j20 = 50 ohms

Now that we know the value of admittance or impedance
at each point in the network we can rather easily find the
phases of the currents. The easy way to do this is to assume
some value of load current, as in Fig. 10-21. One ampere is as
good a choice as any. This current flows through X, and the
load, so we can figure the voltage at the midpoint of the
network by Ohm’s law.

E, =I(R + jX;) = I(8 + j20) = 21.5 ,68.2°V

We can use Ohm’s law again to find the current through the
capacitor.

215, 68.2°
=L S Z2L2L g i5eA
X 20, —9°

272

Fig. 10-21. Voltages and currents



The current lags the voltage across the capacitor by 90°, which
is exactly what it should do. We now know the two currents [,
and I; , so we can find the current through I, , which is also the
input current of the network, by using Kirchhoff's current law.

L =1, + 1, =120°+ 1.082158.2°=0.4 290

We now have all of the currents in the network. The ratio of the
output current to the input current is

Lo_ 10c0°
I 04,90

=25, -9

Inasmuch powers are constant, the impedance-transformation
ratio is the square of the current ratio. The phase shift through
the network is —90°

Any network can be analyzed by using these procedures.
When a calculator is available, all of the computations can be
made in a few minutes.

DESIGN OF T-NETWORK

By contrast, the design procedure is tedious and at times
confusing. If all of the element values in the network are
determined by a detailed analysis, the mathematical
manipulations can be tedious indeed. Fortunately, there are
formulas that can be used to design a T-network for any
desired impedance transformation and phase shift. Of course,
the consideration of keeping the impedance-transformation
ratio to 10:1 or less applies in the T-network just as it does in
the L-network. The formulas for the value of each of the
elements of a T-network are as follows:

_ VR'in RL _ Rin
"7 T siny tany
" R R
X, = R, L _ L
sinvy tanvy
VR'in RL
X = - —
siny
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where R,, = desired input resistance
R, = load resistance
y = desired phase angle between input and output
currents

To understand some of the implications of the above
formulas, let us go back for a moment to the L-network. In
considering an L-network, we found that the phase shift is
given by

cosSy = \/_
T

Now, if we use the above design formulas for a T-network
having a phase shift given by this equation, we find that the
value for either X, or X, becomes zero. This means that we
won't have any inductor at all for X; or X, , and the network
will become an L-network. This shows that the only reason we
need three elements is to get some value of phase shift other
than what we would get with an L-network for the same
impedance-transformation ratio.

Another interesting implication of the formulas is that if
we wished to get a phase shift between zero and the value we
would obtain from an L-network, X, would be negative,
meaning that we would need a capacitive reactance at this
point instead of the inductive reactance that we have shown.
That is, if

S
0<y<cos ( \/7>
then X, will be a capacitor.

Based on our formulas for the values of the T-network, we
can define four different types of T-networks, each of which
provides a phase shift in a given range, as shown in Fig. 10-22.

Whenever an impedance-transforming or phase-shifting
network is designed, it should be analyzed in detail to
determine the relative magnitudes of the currents, the
bandwidth, and the efficiency.

Bandwidth of T-Network

Like the L-network, the T-network is designed on the
assumption that the inductive and capacitive reactances have
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(C) TYPE 3(LEADING) (D) TYPE 4 (LEADING)

Fig. 10-22. The various types of T-networks.

constant values. Inasmuch as the reactance of a coil or
capacitor changes as frequency changes, we can expect ideal
behavior from the network at only a single frequency. At other
frequencies the response will be somewhat different.

Figure 10-23 shows how output current varies with
frequency. Note that as the impedance-transformation ratio r
becomes greater, the effect of frequency is more pronounced.
For this reason, in the T-network (as in the L-network), it is

1.0+

0.8
w r=2
2 06
o 6
8044 10
@

0.24

0 T 7 T T T T T T T

1
05 06 07 08 09 10 11 12 13 14 15
RATIO OF FREQUENCY OF OPERATION TO DESIGN FREQUENCY

Fig. 10-23. Bandwidth of T-network.
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not advisable to attempt an impedance transformation greater
than 10:1 in a single network. Sometimes, when a greater
impedance-transformation ratio is required, a T-network and
an L-network are used in tandem.

NETWORK EFFICIENCY

If a network is inefficient, not only will power that could
have been radiated be lost, but the components of the network
will dissipate the wasted energy in the form of heat. This
means that the components will require higher ratings than
otherwise, and inasmuch as they will operate at higher
temperatures, they will be more apt to fail or change value.

For all practical purposes, we can make a couple of
assumptions that make calculating the power lost in a network
a simple matter.

1. The currents in the network can be calculated by
considering the elements of the network to be pure
reactances with no losses.

2. The losses in capacitors can be neglected because the
losses in the inductors are so much greater.

Based on these assumptions, it is rather easy to compute
the loss in a network. When a network is properly adjusted, the
input and load impedances will be pure resistances. The power
in or out of the network will therefore be

P =1, R, +1°R,

Since we are assuming that all of the losses take place in the
resistance in the inductances in the circuit, the network losses
will be

Pi-j, PR +LFR

where R, & R, are the resistances associated with X, and
X, . These resistances are shown in Fig. 10-24 and may be
determined from measurements with an impedance bridge.
By a lengthy mathematical analysis of the loss in
networks, we could show that the efficiency of a network
depends only on the Q of the inductances, the impedance-
transformation ratio, and the amount of phase shift. The
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Fig. 10-24. Loss resistances in a T-network.

greater the impedance-transformation ratio, the lower the
efficiency of the network. And the more the phase shift differs
from 90° (for the type 1 network), the lower the efficiency.

The analysis would disclose a rather surprising fact; that
is, the efficiency of the network is not dependent on the
number of coils used. Thus, the efficiency of a matching
network can sometimes be improved by using two networks in
tandem instead of one network.

The efficiency of an L-network can be determined by the
simple relationship

R,

Efficiency = R, XR

where R, is the load resistance, and R, is the series loss
resistance of the network. Inasmuch as a T-network is simply
two L-networks in tendem, the efficiency is simply the product
of the efficiencies of the two L-networks.

Figure 10-25 shows a T-network designed to produce a
phase shift of 160° and an impedance-transformation ratio of
36. The coils are assumed to each have a @ of 100. The
currents, based on a one-ampere load current, are shown in
the figure, as is the efficiency. This network, which violates
our fundamental rule that the impedance-transformation ratio
should not be greater than about 10, is a good example of why
we try to keep the impedance-transformation ratio low. The
efficiency of this network is only about 81%. This means that
19% of the power fed to the network is dissipated in the
network and does not reach the antenna.

In Fig. 10-26 we have two T-networks in tandem. Each has
an impedance-transformation ratio of 6 and a phase shift of
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1.6 0.28
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o, J
P,=0.1721.6) + 1%0.28)
=0.33wW
Pout=12(1.4)=1.4W
Efficiency, %= —4 __ =1.4/1.73=81%
I:)out + l:)I

Fig. 10-25. A 36:1 T-network.

80°. The impedance-transformation ratio of the two networks is
equal to the product of their individual impedance-
transforimation ratios—in this case. 36. The phase shift through
tandem networks is equal to the algebraic sum of their
individual phase shifts—in this case. 160°. Thus the two tandem
networks of Fig. 10-26 do exactly what the one network of Fig.
10-25 does. As shown in Fig. 10-26, however. the efficiency of
the tandem networks is about 96 “c.

This example shows that two networks using a total of four
coils, each having @ of 100, are more efficient than a single
network using only two coils each having a @ of 100. Whenever

-an engineer finds that in spite of all his efforts he can’t seem to
get an antenna feeder system to operate efficiently, he should
check the efficiency to see if it might be improved
considerably by using two networks rather than one.
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One conclusion to be drawn from this discussion of
efficiency is that it is very difficult to achieve high efficiencies
with load impedances that are very low compared to the
characteristic impedance of the transmission line. For this
reason, designers try to avoid using towers that have very low
driving-point impedances. Of course, if the power fed to such a
tower is very small, a lower efficiency can be tolerated. When
a high efficiency is required, two networks may have to be
used in tandem.

When we consider the efficiency in matching a
transmission line to an antenna, we can’t ignore the
characteristics of the antenna itself. When an inductance is
used to tune out the capacitive reactance of a short antenna,
the efficiency of the combination is given by

Efficiency, % = L
Q +&
j12 j19.33 j2.24 j3.48

1=0.16A
50 OHMS

o o S

0.12 0.19 0.02 0.03

1=0.16A 1=0.38

—1
8

P4=0.162(0.12) + 0.382(0.19 + 0.02) + 1(0.03)

PRr=0.063W

Pout=1%1.4)=1.4W
. . P t
Efficiency, %= —0U _ —096%
Pout+ Py

Fig. 10-26. Improved efficiency with two T-networks in tandem.
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where @, = @ of antenna (base reactance divided by base
resistance) @, = Q of inductance

Obviously, from this equation, the Q of the inductance
should be as high as possible, and the @ of the antenna should
be as low as possible. This is one reason why standard
broadcast stations rarely use antennas much shorter than 90°.
An antenna 50° high would have a @ of about 100. If the coil
used for matching (say, in an L-network) had a Q of 100, the
efficiency of the combination would only be about 50%.

SERIES RESONANCE

The familiar series-resonant circuit is very frequently
used in directional-antenna feeder systems. It has the
following applications, each of which will be discussed in the
following paragraphs:

1. It can give a phase shift of a few degrees or either side
of 0°.

2. It provides a means of obtaining a variable capacitive
reactance by using a variable inductance.

3. It provides increased harmonic reduction in a
T-network.

Figure 10-27 shows the series-resonant circuit together
with a plot of its impedance and phase shift. The impedance is
seen to be very low at resonance, and higher on either side of

. X

e N e
+j X .
L o-ixe
PHASE
f —o

Fig. 10-27. Series-resonant circuit
and impedance plot.

=i Xc
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resonance. The equation for the magnitude of the impedance
of a series-resonant circuit is

Z=R+jX, —X.)

and the phase shift 6 between the voltage and current is

0: tan_l X—L_—ﬁ

The Q of the circuit is defined as X, /R, where R includes not
only the intrinsic resistance of the inductance but any other

resistance in series with the circuit.
An important consideration in the use of series-resonant

circuits in broadcasting is the voltage rise across the
inductance and capacitance. The voltages across the
capacitance and inductance are opposite in the phase, thus
they cancel out as far as the external circuit is concerned.
Nevertheless, high reactive voltages actually appear across
the inductance and capacitance. They are approximately
equal to the voltage applied to the circuit, multiplied by the @
of the circuit. If a circuit has a Q of 100 and one volt is applied,
the voltage across the inductance and capacitance is in each
case about 100V. At the voltages encountered in broadcasting,
thc voltage rise would be prohibitive unless the @ were held to
a very low value. As with the L-network, the @ of the circuit
should be no greater than 3.

Zero-Degree Phase Shifter

Figure 10-28 shows a series-resonant circuit used as a
phase shifter. It is called a zero-degree phase shifter because
it shifts the phase up to about +15° around 0°, as compared to
the T-network phase shifter, which shifts the phase about 90°.
The 0° phase shifter is used where the characteristics of a
feeder system are such that a 90° phase shift could not be
tolerated.

As shown in Fig. 10-28B, the complete circuit includes not
only the resistance of the load, (R, ) but also the resistance of
the source (R, ). The amount by which the phase shifts for a
given change in reactance depends on the Q of the circuit
hence upon the resistance of the source. We assume that the
load resistance has been properly transformed by networks so

281



FROM w
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B)
Fig. 10-28. Zero-degree phase shifter.

that it looks like a pure resistance equal to the characteristic
impedance of the line.

The Q of the complete circuit must be kept low so as not to
unduly restrict the bandwidth and so as to permit phase
shifting without affecting the load current.

Obtaining Variable Capacitive Reactance

At the power levels used in standard broadcasting,
variable capacitors are large and expensive, although
vacuum-type variable capacitors are becoming practical. It is
customary in broadcasting to use variable inductors rather
than variable capacitors. Hence, when we need a variable
capacitive reactance, we use the arrangement of Fig. 1-29,
which is really just a series-resonant circuit used on the low
side of the resonant frequency.

o . Leb X Fig. 10-29. Obtaining variable
X=X — jX¢ capacitor reactance.

XCI
This circuit is not without its pitfalls. Suppose, for
example, that we need a variable capacitive reactance of
approximately 50 ohms at an operating frequency of 1 MHz.
We could get this reactance with the arrangement of Fig.
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10-30A which calls for a capacitor having a reactance of 100
ohms. At 1 MHz this would mean a capacitance of 0.0015 uF.
The calculations in the figure show the effect of a 1% change in
the value of either inductive or capacitive reactance, such as
might result from temperature changes. Note that if one of the
series reactances changes value by 1%, the net reactance of
the circuit will change by 2%. This is not objectionable.
Suppose, however, that the designer tried to cut costs by
using the circuit of Fig. 10-30B. Here the value of the capacitor
is only 160 pF. At the power rating required for broadcasting,
this would represent a substantial saving. However, as shown
in the figure, if either of the series reactances changed value
by 1%, the net reactance of the circuit would change by 20%.
Such an arrangement would result in a very unstable system.
Unfortunately, such arrangements are occasionally found in a
broadcast-antenna system, sometimes as a result of building a
network from whatever components happen to be available.

ORIGINALLY
X=50 — 100 = ~ 50
FOR 1% CHANGE IN X¢. B

jso X=)50 — 101= - 51 jgso

(2% CHANGE IN X,

ORIGINALLY:
=1950 — 11000= ~ ;50

—100 A FOR 1% CHANGE IN X = 1000
T ’g ‘

20% CHANGE IN X)

Fig. 10-30. Stability of series LC circuit.

Harmonic Reduction

Figure 10-31 shows a T-network that might be used for
impedance matching in a broadcast-antenna system. The
difference between this network and the basic T-network is
that there is both a capacitor and an inductor in the shunt arm
of this T-network. As we saw, an LC combination can be used
to provide a variable capacitive reactance, using a variable
inductor. However, it can be used for another purpose.

For purposes of impedance matching, the shunt arm must
have some specified value of capacitive reactance, say, 20
ohms. Hence, in this case, the fixed capacitor and variable
inductor are selected so that the difference between their
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reactances will be 20 ohms. This means that the circuit will be
operating at a frequency below the resonant frequency. Thus
the impedance will be minimum at some higher frequency,
where the circuit is resonant. By proper choice of the values of
the capacitance and inductance, we can make the resonant
frequency occur at the second. or any other. harmonic of the
carrier frequency. This arrangement is particularly helpful in
reducing second-harmonic radiation. The desired values can
be selected from the equations below.

At design frequency f,
1
27f; L — = X
Trfd 2Tl’fd C ?
At harmonic frequency f;
27f, L — =0
fh 2Trfh C

SERIES-RESONANT AT
SECOND HARMONIC

T

Fig. 10-31. A T-network used for harmonic rejection.

MATCHING COMPLEX LOAD IMPEDANCES

So far, we have seen that within certain practical limits,
we can transform any value of load resistance into some other
value of resistance, using an L- or T-network. In practice, the
driving-point impedance of an antenna tower is rarely a pure
resistance. There is almost always a reactive component. To
obtain maximum power transfer and minimum reflection, this
complex impedance must be transformed into a pure
resistance equal to the characteristic impedance of the
transmission line. This is accomplished by inserting the
opposite type of impedance in series with the lead to the base
of the tower. In many cases, this additional reactance can be a
part of the matching network.
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Fig. 10-32. Handling reactive loads with a T-network.

Figure 10-32A shows a load impedance of 25 + j25 ohms. If
we add a capacitive reactance of 25 ohms in series with this
load, as shown in Fig. 10-32B, it will then look like a pure
resistance of 25 ohms. We can then design an L-network or
T-network to transform the 25 ohms into 50 ohms to match a
transmission line. This is shown in Fig. 10-32C, where we have
a 90° T-network in which the value of each of the elements is
35.36 ohms—the geometric mean of the load and driving-point
impedances.

It isn’t necessary to include the series capacitor of Fig.
10-32C. We can instead let the 25-ohm reactance of the load be
part of the network, as shown in Fig. 10-32D. This means that
the reactance of the network element only has to be 10.36
ohms, the difference between the 25-ohm reactance in the load
impedance and the desired value of 35.36 ohms.

This technique can be used to handle any practical value of
load impedance. Remember that we have several configu-
rations of L- and T-networks to choose from.
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Chapter 1

Feeder Systems
for Standard
Broadcast Antennas

Before a tower can radiate a signal, it must receive a signal
from the transmitter. For proper operation it is essential that
the line carrying the energy to the tower does not radiate
energy. All of the radiation must be done by the tower. The
distribution of energy to the towers is accomplished by an
assembly of components called the feeder system.

In case of a nondirectional antenna, the feeder system
consists of a transmission line together with a network that
matches the impedance seen at the base of the tower to the
characteristic impedance of the transmission line. The feeder
system of a directional antenna performs many more
functions, including the following:

1. Controlling the magnitude of the current fed to each
tower

2. Controlling the relative phase of the current fed to
each tower

3. Transforming the impedance seen at the common
point of the system to a value suitable for properly
loading the transmitter.

The feeder system also includes components for supplying
current to the tower lights, providing lightning protection, and
measuring the amplitudes and phases of the tower currents.
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These three subjects are covered in later chapters. Since the
nondirectional-antenna feeder system is really a very greatly
simplified version of the more general directional-antenna
system, it will not be covered specifically.

Once a directional antenna has been installed, the only
adjustments for controlling the operating parameters of the
system are located in the feeder system. In fact, just about all
of the work in the day-to-day operation of a directional-antenna
system consists of reading instruments and adjusting or tuning
controls in the feeder system.

FEEDING THE TOWER

The most common way of feeding RF energy to a tower is
to apply the signal across a base insulator that is placed
between the bottom of the tower and the ground system (Fig.
11-1). There are disadvantages to this approach, however.
When a tower is insulated from ground, there is the added cost
of the base insulator, which msut support the weight of the
tower, and there are difficulties in feeding power to tower
lights and providing lightning protection. Hence many
alternate methods of feeding energy to towers have been
proposed through the years.

The only alternate system that has gained even limited
acceptance is the shunt arrangement shown in Fig. 11-1B.
Here the base of the tower is connected directly to ground, and
the energy is fed to the tower through a slanted wire, as shown.
The system may be viewed as a single-turn, 3-sided loop that
consists of the slant wire, the bottom section of the tower, and
the ground path. The magnetic field from this loop induces a
voltage in the tower, thus coupling energy to it.

In theory it is possible to select a connection point on the
tower for the slant wire so that the resistive component of the
impedance will be equal to the characteristic impedance of the
transmission line. The reactive component, which will always
be inductive, can be tuned out by the capacitor connected in
series with the slant wire. Care must be taken to minimize the
losses in the ground path. Usually a copper strap is connected
between the outer conductor of the transmission line and the
center of the ground system.
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Fig. 11-1. Series- and shunt-fed tower radiators.

Although limited success has been achieved with shunt
feeding of single towers, the method is seldom used in
directional-antenna arrays. One reason is that the proper point
for connecting the slant wire is not easy to find theoretically,
so that a great deal of cut-and-dry work is required for
optimum coupling. Also, radiation from the slant wire can be
troublesome.

With the series arrangement (Fig. 11-1A), the two
principal considerations are the driving-point impedance of
the tower and the voltage across the base insulator. With a
tower 90° in height, the voltage across the base insulator is
minimum, being in the order of 200V to 250V for 1 kW of
radiated power. The voltage across the base insulator is
greatest when the antenna height is about 180°. The base
voltage can then be as high as 1900V for 1 kW of radiated
power. Since voltage is proportional to the square root of
power, the base voltages for other powers can be obtained by
multiplying the above approximate figures by the square root
of the radiated power in kilowatts.

LAYOUT OF FEEDER SYSTEM

The geometrical layout of a particular feeder system
depends on the type of antenna array and the location of the
transmitter building. Each transmission line must terminate
at a tower, and the lines must converge at the point where the
power-dividing and phase-shifting equipment is located.
Figure 11-2 shows several possible layouts of feeder systems.
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There is little that the broadcast engineer can do about the
layout of the system. But, if it has serious limitations, he can
make changes whenever a major modification is initiated. In
general, there are three rules of thumb for making a good
layout.

1. The phasor equipment—that is, the power-dividing and
phase-shifting networks—should all be located in one
place. There is always some interaction between the
power-division and phase-shift controls, and if they
are separated, adjustment becomes unnecessarily
complicated.

2. The transmission lines should not be any longer than
necessary. Keeping the lines short minimizes losses in
the system.

3. When practicable, the phasor should be located in the
transmitter building, bringing most of the adjust-
ments to one central location.

TOWERS TOWERS TOWERS
PHASOR
PHASOR
TRANSMITTER TRANSMITTER
TRANSMITTER AND PHASOR

Fig. 11-2. Possible feeder-system layouts.

TYPICAL FEEDER SYSTEM

Figure 11-3 shows a block diagram of a feeder system for a
2-tower directional-antenna array. Tower 1 is the reference
tower of the array. To understand how the feeder system
operates, we will start at the reference tower and trace the
signal back to the transmitter. Then we will do the same thing
with tower 2. For convenience, we will consider the phase
angle of the current entering tower 1 to be zero. The magnitude
of the current flowing into this tower is 3.65A.

The first element to be considered is an impedance-
transforming network (in the antenna-coupler block) at the
base of tower 1. This network transforms the driving-point
impedance of the tower in to the characteristic impedance of
the line. In this particular case, the driving-point impedance of
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tower 1 is 27.5 + j16 ohms, and the characteristic impedance
of the transmisson line is 50 ohms. Either an L or T-network
might be used to accomplish the desired impedance
transformation; usually the choice is based on phase-shift
considerations. If a T-network is used, the phase shift can be
adjusted to any desired value. If an L-network is used, we have
to live with whatever phase shift the particular
impedance-transformation produces. In the system of Fig. 11-3
a 90° T-network is assumed. Its 90° phase shift, which is
lagging, must be taken into consideration in figuring the
relative phase of the currents feeding the two towers. In the
figure the current feeding tower 1 is represented by a vector at
0°. We must, therefore, represent the current at the input of the
matching network by a vector that is lagging the reference
vector by 90° as shown.

The electrical length of the transmission line from the
network at tower 1 back to the phasing equipment (phasor) is
259°. Inasmuch as the signal is delayed in passing through the
transmission line, this phase angle is also lagging. Thus the
current at the input to the transmission line is represented by a
vector that lags the reference by 90° + 259°, or 349°.

At this point in the particular system we are studying,
there is a 0° phase shifter. In many systems there is no phase
adjustment in the line to the reference tower. One phase shift
adjustment is all that is required in a 2-tower array, as we are
interested in the phase between the currents to the two towers,
and changing the phase of either current will change the phase
angle between them. The phase shifter in this line, although it
isn’t strictly necessary, adds flexibility to the system and
provides a wider range of adjustment of the phase angle
between the tower currents. We saw in an earlier chapter that
a phase shifter can provide about 15° of phase shift without
seriously affecting the magnitude of the current. If a phase
shifter is provided in each line of a 2-tower array, we can shift
the phase angle between the currents by as much as 30°
without seriously disturbing the magnitudes of the currents
significantly.

Before any adjustments are made, the 0° phase shifter
doesn’t introduce any phase shift. Hence we can represent the
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current at the input to the phase shifter by the same vector
that we used to represent the current at its output—that is, a
phasor with a lagging angle of 349° with respect to our
reference (the current to tower 1). At this point the line
connects to a network called a power divider which we will
look into later in this chapter. Now, let’s look at the phase shift
in the line feeding tower 2.

At the base of tower 2 we have the same problem of
transforming a complex driving-point impedance into the
characteristic impedance of the transmission line. In this
case, the driving-point impedance is 30 + j3 ohms, and the
characteristic impedance of the line is 50 ohms. The
magnitude of the current feeding tower 2 is 4.6A, and this
current must load the current of tower 1 by 20°. Thus we can
represent the current of tower 2 by a vector drawn at an angle
of 20° with respect to our reference.

Again, either a T or L-network may be used to accomplish
the required impedance transformation. In this case, a
T-network is used, and its phase shift is adjusted to —59°. The
reason for this particular value of phase shift will become
apparent as we proceed.

The current at the input to the impedance-transforming
network at the base of tower 2 can be represented by a vector
with a lagging angle of 20° + 59°, or 79°. The length of the
transmission line from tower 2 back to the phaser is 180°, so the
input current to the line can be represented by a vector with a
lagging angle of 79° + 180°, or 259°.

At this point a 90° phase shifter is inserted, and the current
at the input to the phase shifter can be represented by a vector
with a lagging angle of 259° + 90°, or 349°. We can see that the
required phase of current from the power divider to the line
feeding tower 2 is exactly the same as that for the line feeding
tower 1. In other words, the two currents coming from the
power divider are in phase, and by proper selection of
components in the feeder system, the currents at the towers
will have the required phase difference of 20°.

It is important for any broadcast engineer in charge of a
station with a directional antenna to know how the phase shifts
in the feeder system combine to produce the required phase
angles between tower currents.
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It is interesting to note that the transmission line feeding
tower 2 in our example is exactly 1/2 wavelength long. This
would happen because of the geographical spacing between
the towers and the transmitter house, not for any electrical
reason. In a half-wave line the driving-point impedance is
exactly equal to the load impedance. If the load impedance has
any value other than the characteristic impedance of the line,
there will be a standing wave on the line, but it’s presence may
go unnoticed. Sometimes this particular length of transmission
line appears easy to match—until a standing wave causes the
line to fail.

POWER DIVIDER

The purpose of a power divider is to take power from a
single transmission line from a transmitter and distribute it to
several transmission lines in such a way that the proper
magnitude of current is supplied to each tower in an antenna
array. The problem is shown schematically in Fig. 114A. Here
we have two 50-ohm loads, representing the transmission lines
to towers 1 and 2 in the array of Fig 11-3. As specified in that
figure, 366W must be delivered to load 1, and 634W to load 2.
This is to be accomplished by a yet unspecified circuit that has
a driving-point impedance of 50 ohms. Applying Ohm’s law to
the problem, we can calculate the voltage and current applied
to each load that will result in the proper amount of power
being delivered.

Low-Frequency Power Divider

In ordinary 60 Hz power systems we have many
power-division problems—delivering the proper amount of
power to each lamp in a home, for example. At power-line
frequencies power division is accomplished by controlling the
amount of resistance of the load and operating the system on a
constant-voltage basis. A low-resistance lamp draws more
power from the line than a high-resistance lamp. In this type of
system, impedances are intentionally unmatched. We don't
want a load that will draw the maximum possible amount of
power from a generating station!

It is possible, however, to design a low-frequency
power-dividing system that operates on a constant impedance
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level. In fact, it is a good idea for us to do this in order to get a
better idea of power division between impedances of the same
value.

Referring to Fig. 11-4, we see that load 1 (50 ohms) will
require a voltage of 135.5V and a current of 2.71A to draw
366W. Similarly, load 2 (also 50 ohms) will require a voltage of
178V and a current of 3.56A to draw 634W. Also, the 50-ohm
driving-point impedance of whatever is in the box of Fig. 11-4
will require a voltage of 223.6V and a current of 4.47A to draw
the total required power of 1000W for the two loads
(366 + 634 = 1000W).

FROM — | POWER P 3

TRANSMITTER 500 | DIVIDER

P 634W

366 3
|1=‘/_Pé =J—— =2.71A 12= J =3.56A
5 50 50

Vy=\PR=\ 360x50=1353V Ep=\P,R=1\634x50=178V
Fig. 11-4. Power divider problem.

i

J;

We can easily specify a transformer to accomplish the
necessary power division. Working on a voltage basis, we can
specify a transformer like that shown in Fig. 11-5A, which has
a turns ratio such that when 223.6V is applied to the primary,
the proper voltages will appear at each secondary. The ratios
work out to be 0.61 for load 1 and 0.80 for load 2. That is, for
every 100 turns on the primary, there will be 61 turns on
secondary 1 and 80 turns on secondary 2. (You should carefully
calculate the voltage, current, and impedance values at each
point in the circuit of Fig. 11-5A to get a good feeling for what is
going on. This will be helpful in understanding how an RF
power divider operates.) In Fig. 11-5B we have simply
replaced a transformer having a primary and two secondaries
with an autotransformer having two taps on its single winding.
Asimilar arrangement is used for RF power division.
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Fig. 11-5. Low-frequency power divider.

RF Power Divider—Series Type

The circuit of Fig. 11-6 is similar to the series power
divider shown in Fig. 11-5. In Fig. 11-6 all of the loads again
have an impedance of 50 ohms. The problem is to deliver the
proper amount of power to each load. Unlike the example of
Fig. 11-5, the input to the divider does not necessarily have to
have a driving-point impedance of 50 ohms. We can let it
assume almost any impedance we wish, then transform this
value of impedance back to 50 ohms with an impe-
dance-transforming network. In fact, as we will see, there are
good reasons for making the driving-point impedance of the
power divider higher than 50 ohms.

The average broadcast engineer isn't interested in
designing a power divider. Neither is he interested in just how
the component values are arrived at. He is, however, greatly
interested in how the various adjustments affect the
performance of the antenna array. It is not uncommon to find
a power divider with the adjustments so far from their
optimum values that it is extremely difficult to get the array
into proper adjustment.

The circuit of Fig. 11-6 can be thought of as a parallel
tuned circuit with two loads tapped off the coil. As such, it will
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have a definite value of Q. If the @ is too high the circulating
current, and hence the losses, will be high, and the bandwidth
will be restricted. If the @ is too low, there will be a lot of
interaction between the adjustments.

It is usually easier to design a series power divider by
starting with the proper position of the bottom tap. The
reactance of part of the inductor between the lowest tap and
ground should not be less than the characteristic impedance of
the transmission line connected to the tap. After a system has
been designed and installed, the easiest way to adjust it is to
start with the setting of the top tap on the coil. This tap should
be kept as high as possible on the coil to get the desired amount
of current into the line that carries the most power. The
positions of the other taps are then set for the proper amount of
current in each line. There is a certain amount of interaction

FROM TRANSMITTER 178V S R1
1353V <Ry l
1

(A)

Qe

FROM TRANSMITTER

(8) -

s L
£ g

—t—

©) =

Fig. 11-6. Series power divider.

296



between the adjustments, and the procedure may need to be
repeated several times for optimum adjustment.

As a general rule, the series power divider is well suited
for use in arrays where there are more than three towers. The
loads are not in parallel, and thus it is possible to keep the
driving-point impedance of the divider at a high level. On the
other hand, there is apt to be more interaction between
adjustments than in the parallel power divider, which we will
consider next.

Although a practical power divider may use taps for
adjustment (Fig. 11-6B), a more common arrangement is to
use vernier coils (Fig. 11-6C). Here smaller, continuously
adjustable coils are tapped onto the main coil. Since the
vernier coils are continuously adjustable, a very precise
setting may be made of the effective position of each tap. If an
adjustment is pushed to the extreme of its range, it is
necessary to move the taps on the coil.

Parallel Power Divider

Going back for a moment to the low-frequency
power-division problem that we considered in connection with
Fig. 11-5, we could just as well have used a separate
autotransformer for each line, as shown in Fig. 11-7. This
figure is the basis for the parallel power divider shown in Fig.
11-8. Here a separate coil is used for each transmission line.
This arrangement has the advantage of less interaction
between adjustments than with the series power divider. On
the other hand, since all of the loads are in parallel, it is hard to
keep the driving-point impedance high when more than three
towers are fed from it.

Fig. 11-7. Alternate low-frequency

power divider—parallel type.
R2 R1

@ @

To summarize, a parallel power divider is easy to adjust
but is inefficient when there are more than three towers. In
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Fig. 11-8. Parallel power divider.

practice, the adjustments are usually made by vernier coils
that are tapped onto the main coil, as with the series divider
shown in Fig. 11-6C.

To adjust the parallel power divider, the current to the
tower that carries the most current is set first. If possible, this
tap should be set to the top of the coil, as this will result in the
highest driving-point impedance for the divider. For this
reason, in some parallel dividers there is no adjustment for the
line carrying the highest current; this line is merely connected
tothe top of one of the coils.

Miscellaneous Power Dividers

Although the series and parallel power dividers described
in the preceding pages are by far the most commonly used
types, many different arrangements are used, particularly
where there are only two towers in the array and the problem
of power division is not as complicated. Three such
arrangements are shown in Fig. 11-9.

The divider shown in Fig. 11-9A is sometimes called the
unequal-resistance divider. Here two L-networks are used to
change the impedance seen at the input of the network and
thus the amount of power that the line draws. The power
drawn by each line connected through such a network varies
inversely with the driving-point impedance of the particular
network. Thus if R, and R, are the driving-point impedances
of the two L-networks of Fig. 11-9A, the power division will be
according to the relationship

P, R,

P, R

where P, and P, are the powers to towers 1 and 2. The input
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impedance of the two networks in parallel is simply the
parallel combination of the two driving-point impedances.

The principal limitation of this type of power divider is
that the phase of the current going to each line, as well as the
input impedance of the divider, changes whenever an
adjustment is made. This means that when we try to adjust the
ratio between two currents, we also change their phase, thus
necessitating readjustment of the phase control. Although
some interaction between ratio and phase adjustments is
common, with this particular type of divider the interaction is
more pronounced, and proper adjustment of the controls is
more difficult. For this reason, this power divider is rarely
used on new installations.

Another interesting circuit that has been used for dividing
power between two lines is shown in Fig. 11-9B. In this circuit,
if the load impedances remain constant, the input impedance
will remain constant as long as the capacitor and inductor are
varied together. As in the unequal-resistance divider, the
power adjustment will also cause a phase shift.

The power divider of Fig. 11-9C takes advantage of the 180°
phase difference between the opposite ends of a center tapped

A TWO L-SECTIONS IN PARALLEL
B QUARDATURE—90" FEED

—?-—01

.N l 1
Fig. 11-9. Miscellaneous power-

| dividing networks.

I ‘ 180

C PUSH-PULL—180 FEED
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resonant circuit. It has been used with 2-tower arrays where
one tower is much closer to the transmitter than the other,
resulting in lines that have widely differing lengths. When the
adjustment is near the center of the coil, the magnitude of the
currents can be changed with very little phase shift. However,
as the adjustment gets closer to one end of the coil, the effect
on phase shift will be more pronounced.

COMMON-POINT IMPEDANCE MATCHING

The driving-point impedance of a power-dividing network
is usually made as high as practicable. It is thus necessary to
have some sort of arrangement to transform this impedance
down to a more suitable value for matching to the transmitter.
Many different circuit arrangements have been used for this
purpose. One common arrangement is shown in Fig. 11-10A.
This circuit can be best understood by redrawing it as shown in
Fig. 11-10B, with the capacitor broken into two separate units.
The input impedance of the coil portion of the power divider
almost always has an inductive component, which is tuned out
by capacitor C2. The driving-point impedance of this portion of
the circuit is then a high resistance. The L-network formed by
Cl and L1 then transforms this impedance into the desired

e

373

1
A =
MATCHING POWER DIVIDER
NETWORK
L1
C1 C2 X
oL

(B
Fig. 11-10. Matching power divider to common point.
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common-point value, which is often 50 ohms. As shown in Fig.
11-10A, the two capacitors can be combined and only one
physical unit actually installed.

Sometimes the series power divider is connected as shown
in Fig. 11-11, with the capacitor at the top of the coil, the input
tapped below this, and the various lines connected to taps that
are still lower on the coil. The reason for this confusing
arrangement becomes clear if the circuit is redrawn as in Fig.
11-11B. Here the two inductors, L1 and L3, can be seen to be the
series arms of a T-network. Inductance L2 and capacitor Cl
form the shunt branch. Thus the circuit is really a T-network
connected to the tapped coil of a series power divider. Power
division is accomplished by the setting of the taps, and the
other three taps are used to transform the impedance into the
desired common-point impedance.

L1 (A)
e o a'e W
-
7
Fig. 11-11. Alternate matching ar-
rangement.
i el
8)
ol 3
BANDWIDTH

One characteristic of directional-antenna systems that is
often neglected is that of bandwidth. The antenna and the
feeder systems are designed to operate properly at the carrier
frequency. If the design is properly carried out, the system
will work equally well out to the highest and lowest sidebands
of the signal. This concept is often neglected, however, when
anarray is adjusted or when design changes are made.
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If the bandwidth of the complete antenna system is too
narrow, the following effects may be produced:

1. The sidebands may be attenuated or accentuated,
resulting in distortion of the signal and reduced
radiated power.

2. The phase shift at the sidebands may be substantially
different than at the carrier frequency, resulting in a
geographical shift of the pattern with modulation. This
is particularly noticeable in a pattern with deep nulls.

3. Inasmuch as narrow bandwidth is associated with
high-Q circuits, the losses will be high and the
efficiency of the system will below.

The most common cause of inadequate bandwidth in an
antenna feeder system is the use of a single network to effect
an impedance-transformation ratio of greater than 10. A
high-impedance transformation ratio results in high-Q
circuits, and high-Q circuits inherently have a narrow
bandwidth. Narrow bandwidth may also result froni the use of
short towers, but this is rare in any system installed in recent
years, because short towers usually do not provide the
minimum field intensity required by the FCC Rules.
Sometimes a narrow bandwidth results from the use of a
critical array to get a very complex radiation pattern.

In any case, one effect of a narrow bandwidth is the loss of
sideband power. There are two factors that contribute to this.
First, the impedance seen by the transmitter varies over the
bandwidth of the signal so that full modulation cannot be
realized at higher audio frequencies. Second, the narrowband
system simply will not couple the higher sideband frequencies
to the antenna.

When a system is found to have inadequate bandwidth, the
cause should be found and, if possible, corrected. Narrowband
systems are inherently unstable and will usually continue to
cause problems until they are straightened out. One corrective
approach that has been taken with limited success is to use the
slightly different form of matching network described
momentarily.
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Figure 11-12A shows coil and a plot of how its inductive
reactance varies with frequency. The plot is a straight line;
the higher the inductance, the steeper the slope of the line.
There are cases where the bandwidth of a network could be
improved if we had a reactance whose slope was steeper.
Unfortunately the size of the inductor is limited by the design
of the network. There is a way that we can get the value of
inductive reactance we need and, at the same time, have a
reactance that varies faster with changes in frequency than
the reactance or a simple inductor does. The scheme istousea
series-resonant circuit in place of one of the inductors in the
network. Figure 11-12B shows a series-resonant circuit and
how its reactance varies with frequency. Note that both of the
circuits in Fig. 11-12 have a reactance of 50 ohms at the design
frequency, but that the reactance of the series-resonant circuit
changes more rapidly with frequency.

X =50 XL - Xc=50 e
X X

50 _— 50
OHMS / OHMS /

f— f—e

Fig. 11-12. Variation of Reactance with frequency for an inductance and a
series LC circuit.

Figure 11-13A shows the usual type of T-network used to
match a transmission line to a tower. The normalized
impedance seen looking into the network is plotted by X, on a
Smith chart in Fig. 11-14. If the network of Fig. 11-3A is
replaced by the network of Fig. 11-13B, the result is a
normalized impedance as shown by the 0s in Fig. 11-14.

X
X ——

m;\ LINE TT ANTENNA
(B)

(A)
Fig. 11-13. Usual T-network, in A; T-network with series-resonant compo-
nent, in B.
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Fig. 11-14. Impedance of networks of Fig. 11-13.

The fact that the points of the new-network plot are
clustered close to the prime center of the chart shows that a
much more constant load impedance is provided for the
transmission line and, hence, for the transmitter. This
example is based on an actual occurrence. The towers were
too short to be good antennas, but with the modified network,
satisfactory performance was obtained.

HANDLING THE NEGATIVE-RESISTANCE TOWER

In an array of four towers or more, the resistive part of the
driving-point impedance of one or more of the towers often has
anegative value. This means that the tower obtains its energy
through the mutual impedance between it and the other towers
of the array. This is a confusing situation, but if it is carefully
thought out, it will cause no serious problems. We know the
following things concerning the negative resistance tower:
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1. The tower must carry a current of the proper
magnitude and phase.

2. The direction of the current is 180° out of phase with
what it would be in a tower having a positive base
resistance.

3. We need some method of controlling the magnitude
and phase of the tower current.

The simplest, although not the most efficient, way of
handling the negative-resistance tower is to terminate it
through a matching network to a resistor, as shown in Fig.
11-15. The energy that the negative tower actually gets from
the other towers is thus dissipated in the resistor. The
magnitude and phase of the current may be controlled by the
parameters of the network. Naturally, this isn't a very
efficient arrangement, particularly if the negative tower
handles a substantial amount of current.

MATCHING
NETWORK

TERMINATING NEGATIVE-RESISTANCE
RESISTOR TOWER

Fig. 11-15. Terminating a negative-resistance tower.

The preferred way to handle a negative-resistance tower
is to feed the energy back to the power divider, where it will be
passed back into the feeder system again. In this way, all of
the energy is radiated rather than some being dissipated in a
resistor.

Figure 11-16 shows an arrangement for recovering power
from a negative-resistance tower. The procedure is to trace
the phase of the signal from the power divider to the first
tower, back into the system through the negative-resistance
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tower, and back to the power divider. When the signal gets
back to the power divider, it has the same phase as when it
left. That is, it has experienced an integral number of 360°
phase shifts. Note that when we add up the phase shifts, we
must add or subtract 180° because the current in the
negative-resistance tower is flowing in the opposite direction
of the current in the other tower.

n°
A
- -290° _ TOWERNO. 1
—ot—0 ) e
04

— | POwWER . | e
DIVIDER — 290°
” [Ceo 2 TOWERNO. 2
- -117°
= - NEGATIVE
RESISTANCE

PHASE SHIFTS FROM A TO NO. 1 TONO. 2, BACK TO A —90°
—290° —116° + 120—180° —117° —290° —117°=1080°
—1080°=360°3=0

ADD — 180° DUE TO CHANGE IN REFERENCE DIRECTION.

Fig. 11-16. Arrangement for handling the negative-resistance tower.

USING ONE TOWER AT TWO FREQUENCIES

Although it would be impracticable with directional-
antenna systems, there may be occasions when two
transmitters operating at different frequencies in the standard
broadcast band use the same tower as an antenna. The
problem in this case is to allow the transmitters to feed the
tower but not each other. The common way to accomplish this
is with resonant circuits.

At A in Fig. 11-17 is an LC circuit that has two inductors
and one capacitor. Branch 1 is inductive at all frequencies.
Branch 2 is capacitive at frequencies below its series-resonant
frequency and inductive at frequencies above resonance. Thus
there will be one frequency below the resonant frequency of 2
where its capacitance resonates with the inductance of branch
1 to form a parallel-resonant circuit, which has infinite
impedance (assuming no losses). At a higher frequency
(nearer f, in the figure), branch 2 will be a series-resonant
circuit, and its impedance will be zero (assuming no losses). In
practice, the impedances will be neither infinite nor zero, but
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they will be very high at f and low at f, . Thus circuit A will
shunt any signal at frequency f, fed back from the tower, but it
will not interfere with the progress of signal f toward the
tower. With the arrangement of circuit A, the
parallel-resonant frequency will always be lower than the
series-resonant frequency.

At B in Fig. 11-17 is another circuit with both series and
parallel resonance, but with this arrangement, the
parallel-resonant frequency will always be higher than the
series-resonant frequency (just the opposite of the case of
circuit A). Consequently, B will pass f, energy to the tower
but reject f, energy. Together, A and B will pass f
transmitter, and bypass around the f transmitter any f,
energy that is fed back.

"
i {_ 200 1< TO TOWER
fn B
o
1 2
A
fh
—_—
t VA 1L
h IN
BI
. VNAAAST
’
Lef .

Fig. 11-17. Feeding two transmitters to one tower.

Below, in the figure, circuits A’ and B’ will pass §, energy
to the tower and prevent any f, energy from getting back to
transmitter f, .

By actually following the signal paths in Fig. 11-17, you can
see that the energy from both transmitters is fed to the tower,
but neither of the transmitters feeds energy to the other.
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Chapter 12
Ground System

BRI e G e R T L L e U

The theoretical performance of a vertical antenna is derived
by assuming that the antenna will be operating over a
perfectly conducting earth. This type of analysis is useful in
that it will show us the best possible performance that can be
obtained from a given antenna. We never get the maximum
theoretical performance for a number of reasons, one of which
isthat the earth is not a perfect conductor.

To compensate to some extent for the effect of the
conductivity of the earth on signal propagation, all standard
broadcast stations are required to have a ground system. The
ground system of a standard broadcast station consists of
radial wires extending outward from the base of each tower.
Usually these ground wires are buried. It seems that the old
adage “‘Out of sight, out of mind’’ applies to ground systems. It
is common for the ground system to almost never be
inspected, and a deteriorated ground system is often
responsible for many ills that befall a directional-antenna
system, including low efficiency, loss of signal in the primary
service area, and general instability of the array.

BASICS OF THE GROUND SYSTEM

Figure 12-1 shows a single-tower broadcast antenna. The
electric field from the tower extends from the tip of the tower
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to the ground. For simplicity the diagram shows only a single
line of force. Where the line reaches the ground, a current
flows through the ground back to the base of the tower. Thus
the lines of the electric field are a part of a closed loop that is
completed by the current flowing in the ground back to the
antenna.

TOWER

LINE OF ELECTRIC FIELD

GROUND "/

CURRENT PATH IN GROUND
Fig. 12-1. Ground current.

If the earth were a perfect conductor, there would be no
resistance to this current, and the lines of the electric field
would be perpendicular to the ground at the points where they
reached the ground. With an imperfect conductor, which the
earth actually is, the situation is different. The lines of the
electric field are not perpendicular to the earth, but are
actually tilted forward in the direction of propagation (Fig.
12-2). This means that the direction of propagation of the wave
is directed slightly toward the earth. This line of propagation
can be resolved into two components at right angles to each
other. One component, the regular ground wave, is directed
along the surface of the earth. The other component is directed
downward into the earth and represents the loss that is
encountered when a signal is propagated over an imperfect
conductor.

Conductivity and Skin Depth
The earth is actually both an imperfect conductor and a
dielectric. At broadcast frequencies conduction is the chief

phenomenon, and we can usually neglect the dielectric
constant. The conductivity of the earth ranges from about 2
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DIRECTION OF TRAVEL

)

GROUND CURRENTS
Fig 12-2. Tilting of electric vector of wave front.

mmbho/m (2 millimho per meter) for dry, sandy locations to as
high as 5 mho/m for sea water. Although the lowest
conductivity found on the surface of the earth is about 1
mmho/m, scattering of the wave by rough terrain can
introduce losses that will make the conductivity appear even
lower than this.

The current flowing in the earth back to the antenna (Fig.
12-2) penetrates the earth for some distance, but the depth of
penetration is limited by the skin effect. The skin depth is the
depth at which the current has fallen to about 37% of its value
at the surface. This depth depends on frequency and is smaller
at higher frequencies. Nearly 90% of all ground losses occur
within this depth. Figure 12-3 shows the variation of skin depth
with ground conductivity for various frequencies.

The currents in the ground from all directions come
together at the base of the tower. The ground loss is the sum of
the losses due to all of the ground currents coming from all
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Fig. 12-3. Skin depth versus ground conductivity.

310



directions. Without some sort' of artificial ground system,
these losses would be prohibitively high at broadcast
frequencies.

Radial Wires

Experimental work has shown that at distances greater
than about 1/3 wavelength from the base of the tower, ground
losses are almost independent of the tower height. Closer to
the antenna the losses increase rapidly as the tower height is
decreased. Thus, for antennas of the heights normally used in
standard broadcasting, the ground should have a good
conductivity out to about 1/3 wavelength from the base of the
tower. The usual approach to improving ground conductivity
in the vicinity of the antenna is to install a ground system
consisting of radial wires extending out from the base of the
tower as shown in Fig. 12-4.

240 RADIALS EACH APPROXIMATELY
10 TO 15 DEGREES LONG AND BURIED
2 TO 4 INCHES. 120 RADIALS
EXTENDED TO APPROXIMATELY 90
DEGREES AND BURIED 6 TO 8
INCHES ALONG THE EXTENSION.

Fig. 12-4. Ground system for nondirectional antenna.

The current FCC Rules specify that the radials should be
at least 1/4 wavelength long and that there should be as many
radials as practicable, but in no case less than 90. The Rules
add that a system of 120 radials spaced every 3° and extending,
0.35—0.4 wavelength from the tower is considered an excellent
ground system. In addition, a square ground screen 24 or 48 on
a side is often provided at the base of the tower, particularly
when the tower height is such as to cause a high base voltage.

Whenever a less-than-optimum ground system is used, the
FCC requires a complete field-intensity survey to establish
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that the effective field at one mile meets the minimum
requirements.

The radial ground system is chosen because the radials
follow the natural paths of the ground currents. At one time,
ground meshes of crossed wires were thought to form a good
ground system. This approach is not used today, because the
paths to the base of the tower are not direct, and circulating
currents may flow, introducing additional losses.

PRACTICAL GROUND SYSTEMS

The diameter of the wire used for radials doesn’t seem to
have much influence on the efficiency of the ground system.
Svstems have been installed with No. 18 enameled wire and. at
the other extreme, with 2 inch copper strap. Wire in the No. 10
size is commonly used. In some areas the ground is especially
corrosive. and the radial wires deteriorate rapidly. In all
cases. the use of ordinary tin—lead solder should be avoided
since it usually deteriorates rapidly. Connections should be
brazed or made with silver solder.

Some installations have ground rods at the end of each
radial, with the outer ends of the radials bonded together as
shown in Fig. 12-5. There is some question as to the
effectiveness of these schemes except when the radial wires
are too short. If the radial wires have the optimum length, the
current will be greatest at the tower and will drop to zero at
the ends of the radials. The way to tell whether or not bonding
or ground rods would be advantageous is to check the current
along a radial. If it drops to nearly zero at the end of the radial,
there is little to be gained by using ground rods. If, on the other
hand, there is still a substantial current at the end of each
radial, it may be advantageous to install ground rods and tie
the radials together as in Fig. 12-5. The ground rods must be

STAKE S DRIVEN INTO GROUND

Fig. 12-5. Questionable ground system.
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deep to be effective. Referring to Fig. 12-3, we can see that at
the upper end of the standard broadcast band, the ground rods
would probably have to be over 30 ft long to be effective.

GROUND SYSTEM INSTALLATION

Installing or replacing a ground system is not particularly
difficult, but care should be taken to do a good job. The ground
system is not something that can be dug up and fixed easily, so
it is advisable to do the job properly the first time. Usually a
properly installed ground system will do more to make an
antenna system stable than any other single factor.

Radial wires of at least No. 10 size should be used, and a
ground screen about 24 by 24 ft is recommended. The radials
should be plowed into the ground to a depth of about 6 in. and
should be as straight as possible. The radials should be brazed
to the sides of the ground screen, and any sections in the
screen should be brazed together. At least two 2 in. copper
straps should run from the bottom of the base insulator to the
edge of the screen. The screen should be mounted on a frame
at least 4 in. above the ground, and when the installation is
completed, the screen should be filled with gravel.

Heavy growths of vegetation in the vicinity of the antenna
tower will increase losses. It is generally recommended that
the area covered by the ground screen be treated to restrict
the growth of vegetation. Used crankcase oil is quite effective
for this. The rest of the area over the radials should be seeded,
and the area should be mowed regularly to keep the grass low.

When an existing ground system is replaced, there is often
a building in the area where it is necessary to run a radial.
Tunneling under a building is usually not practicable, so the
best practice is to bury a 2 or 4 in. copper strap at a depth of
about 4 to 6 in. around the periphery of the building (Fig. 12-6).
The radials that would normally lie where the building sits
should be run to the strap and brazed to it. The radials can then
be continued from the other side of the building as shown.

Finally, in many cases, a ground strap at least 2 in. wide
should be run from the ground screen to the transmitter
building.
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GROUND ALL INSIDE
EQUIPMENT TO STRAP

METHOD OF INSTALLING cont
RADIALS AROUND BUILDINGS CIUTLIRIE (RIAOU G, [AR000Y
THIS POINT FOR REQUIRED

2"0OR 4" STRAP AROUND DISTANCE
BUILDING. BURIED 6"~
(]
[
\
TOWER SCREEN
RUN RADIALS TO EXISTING BUILDING

STRAP AND BRAZE
Fig. 12-6. Running ground system past a building.

Wherever possible, all of the radials should be the same
length. This isn't always possible, particularly in older
installations, where the property belonging to the station may
not be large enough to permit equal radials. For example, the
antenna may be erected in the center of a rectangular plot as
shown in Fig. 12-7A. Then the diagonal radials and those
extending along the long dimension of the rectangle may be
long enough, but there may not be enough property along the
short dimension of the lot to permit radials as long as we would
like to have them. The result is often that the pattern of a tower
tends to be elongated as shown in Fig. 12-7B. About the only
thing that can be done to help this situation is to install long
ground rods at the ends of each of the shorter radials. This will
probably improve the pattern, but in many cases it still will not
be circular.

Fig. 12-7. Effect of short ground
radials.

(A) (B)
SHORTGROUND  DISTORTED
ADIALS PATTERN
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DIRECTIONAL ANTENNA GROUNDS

Although the ground system is important with any
standard broadcast antenna, it is especially important with a
directional-antenna system. The design of such a system is
based on all of the towers in the array radiating
omnidirectionally with equal efficiency. To accomplish this,
each tower of the array needs an effective ground system.
With most directional antennas the spacing between the
towers is such that the radials from the various towers tend to
overlap. This overlapping is undesirable and can be avoided by
using the scheme shown in Fig. 12-8. Here 120 radials are
installed around each tower. The points where the radials
meet are connected together with a copper strap at least 2 in.
wide. As with other connections in the ground system, the
strap should be brazed to the radials. Another copper strap
should be run between the bases of the towers and to the
transmitter building.

A — STRAP BETWEEN THE TOWERS
B — STRAP AT POINT OF OVERLAP
Fig. 12-8. Typical directional antenna ground system.

EQUIPMENT GROUNDING

The ground system of the antenna is the place in the
station installation that we must consider to be the best
ground. Equipment in the transmitter building must be
connected to the strap leading from the ground system.

When overhead coaxial transmission lines are used, they
should be bonded to the ground system at intervals of not more
than 20 ft (Fig. 12-9).
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TRANSMISSION  pogT  BONDED pOST(BONDED

LINE A A
Ll
2IN.
2IN. STRAP STRAP
GROUND -
BURIED > BONDED—*

[T THAN20FT
Fig. 12-9. Grounding of overhead transmission lines.

It is almost always necessary to have an impe-
dance-matching network at the base of each tower, and any
grounds in this network should be bonded to the ground
system. Care should be taken to properly ground any metal
enclosures used to house matching networks or base-current
meters.

Figure 12-10 shows a satisfactory system of making a
ground inside a cabinet. The line is insulated where it enters
the cabinet, and a ground connection is made to the inside of
the cabinet. In the same way, a strap from the ground system
is insulated until it is inside the cabinet, where it is connected
to the common ground. With this arrangement all of the
currents will flow in the ground conductors on the inside of the
cabinet, and there will be no stray currents on the outside

surface.
INSULATE GROUND STRAP
LINE UNTIL IT IS INSIDE
CABINET

INSULATE |
FROM GROUND

STRAPTO
STATION GROUND
Fig 12-10. Equipment-cabinet grounding.
SPECIAL GROUNDING ARRANGEMENTS

The ground system is one of the most important parts of
the AM antenna system. It is responsible for most of the losses
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associated with the towers and is a frequent cause of
instability in directional systems. The ground system should
be the best available, with radials that are long enough to do
the job.

\—ROAD OR CREEK

A — STRAPS ALONG ROAD OR CREEK BONDED TO RADIAL WIRES
B — BONDS UNDER THE ROAD OR OVER THE CREEK CONNECTING THE STRAPS

Fig. 12-11. Special grounding arrangement to overcome an obstacle.

There will always be situations where obstacles to a good
ground system will be encountered. Sometimes, for example,
there will be a road or stream running right where a radial
should be. In a case like this (Fig. 12-11), the ground system is
laid out in the usual way on both sides of the obstacle. Then a
copper strap is run along each side of the obstacle. Finally,
copper straps are run through the obstacle to complete the
circuit. The principles demonstrated in Fig. 12-11 can be
modified so as to handle most obstacles in the way of ground
radials.
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Chapter 13

Antenna
Instrumentation
and Measurements

Y R Y T P e ey e e e Ty

There are two classes of instruments used with standard
broadcast antennas: (1) instruments used for measuring
electrical parameters in the station and on the antenna, and
(2) instruments used at some distance from the antenna to
determine the intensity of the radiated field. This chapter is
concerned with the first of these. Measurements of field
intensity and their interpretation are sufficiently different that
they are discussed in the next chapter.

The first requirement for any measuring instrument is
that its accuracy be better than the tolerance in the device or
system it is intended to evaluate. If, for example, an ammeter
is used to calibrate another ammeter, the accuracy of the
standard should be about ten times better than the accuracy of
the meter being calibrated. This principle may seem obvious,
but it is frequently violated in broadcast practice. It is not
uncommon to find an engineer trying to hold the phase angle of
the currents feeding two towers to within 2° with a monitoring
system that has an inherent error of 5° or more. Improving the
accuracy of measurements in an antenna sytem usually pays
off in improved system performance.

There are three quantities commonly measured in an AM
antenna system: current, impedance, and, in directional
arrays, phase angle.
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RFAMMETER

The most common measuring instrument in standard
broadcast antennas is the thermocouple RF ammeter. It is
used to measure current at the base of each tower, as well as
at the common point of a directional-antenna system. Most
broadcast engineers feel that the thermocouple RF ammeter
is the least reliable instrument in the entire station, and in
many instances this feeling is justified. The RF ammeter can,
however, be used and read more intelligently if its principles
of operation are well understood.

The heart of the thermocouple RF ammeter is a thermal
converter, which consists basically of a short heater strip that
carries the current being measured, plus a thermocouple to
measure the temperature difference between the center of the
heater strip and its ends (Fig. 13-1). The operation of the
thermal converter is based on these assumptions.

1. All of the current being measured passes uniformly
through the heater strip.

2. All of the other parts of the instrument, except the
heater strip, are at the same temperature.

3. A constant amount of heat is generated throughout the
heater strip by the current being measured.

When the above three conditions are met, the temperature
difference between the center of the heater strip and its ends is

THERMAL
CONVERTER

Fig. 13-1. Thermocouple ammeter.
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proportional to the square of the current being measured. The
efficiency of the thermal converter is low, a thermocouple
output voltage of 10 mV being typical for full-scale current.
This voltage is measured by a conventional D’Arsonval
permanent-magnet, moving-coil meter, which is calibrated to
read in RF amperes. Whenever full-scale currents of less than
about 500 mA are required, the thermal converter is usually
housed in a vacuum enclosure to improve its efficiency.

When an RF thermocouple ammeter is used under ideal
conditions, it is capable of performing accurate measure-
ments. Unfortunately, the conditions in the average broadcast
station are far from ideal. The meter is often located in a
“doghouse” at the base of a tower, where it is subjected to
temperatures that range from over 100°F in summer to below
zero in winter.

One frequent source of errors in RF ammeter
measurements is temperature influence. The manufacturer of
the meter compensates it so that its indication will be within
prescribed limits over a wide range of ambient temperatures.
However, the compensation is based on all parts of the meter
being at the same temperature, which isn’t always the case
when the temperature of the meter is changing. For example,
when an engineer goes to the dog house to check meter
indications, the first thing that he does is frequently something
that will change the ambient temperature. In the summer he
may open a window or turn on a fan, and in the winter he may
turn on a heater. When this is done, the temperature of the
meter starts to change. The change of temperature is not
uniform; some parts of the meter heat up or cool off faster
than other parts. Under this condition the indication may be in
error by a large amount. When the temperature of the meter
stabilizes—that is, when all parts reach the same
temperature—the indication should be within the prescribed
limits

One of the enemies of thermocouple ammeters is
lightning. It is essential to have an arrangement that will short
out the meter when it is not being read. The simple shorting
switch of Fig. 13-2A will provide some protection for the meter,
but it is not recommended. With this arrangement the meter is

320




not completely removed from the circuit, and the length of the
line is not the same when the meter is in the circuit as when it
is out of the circuit. In some critical installations this small
extra length of line is enough to disturb the indication of the

meter.
The arrangement of Fig. 13-2B is preferred. Here the

meter is switched completely out of the circuit when it is not in
use, and the length of the short is made equal to the length of
the circuit through the meter, so that the length of the
transmission line will not be disturbed when the meter is
switched in or out of the circuit.

TO
TOWER —=__TOTOWER
(A) U MAKE-BEFORE-
(8) BREAK SWITCH

Fig. 13-2. Base ammeter meter protecting switches.

The most likely effect of lightning is that the heater of the
thermocouple will be burned out. There is, however, a more
subtle problem that can result from current surges due to
lightning, even when the meter is switched completely out of
the circuit. During a thunderstorm there are many surges of
current throughout an antenna feeder system. In a good
installation these surges are bled off through air gaps and
lightning protectors. Nevertheless, very high currents may
flow in the vicinity of the RF ammeter. As with all currents,
there are strong magnetic fields associated with these. A
transient magnetic field may interact with the field of the
magnet in the meter and either strengthen or weaken it,
depending on the relative directions of the two fields. If the
indication of an RF ammeter changes considerably
immediately after a thunderstorm, it is a good idea to check
the calibration of the meter before suspecting that the antenna
itself is at fault.
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Another problem with thermocouple ammeters is that,
like other permanent-magnet, moving-coil meters, they are
usually calibrated for use on either a magnetic or nonmag-
netic panel, but not both. When a meter is mounted on a panel
that is made of a magnetic material, some of the flux from the
magnet is shunted through the panel, reducing the flux in the
air gap of the meter. This causes the meter indication to be
low. Manufacturers calibrate a meter for the type of panel on
which it is to be used. It is common for a broadcast engineer to
calibrate a thermocouple ammeter with it lying on a bench.
But if the meter has been calibrated at the factory for useon a
magnetic panel, it will be in error when used on the bench.

One more source of error in an RF ammeter is the
presence of stray capacitances between various parts of the
meter and any RF conductors in its vicinity. As pointed out
before, the proper operation of the thermal converter is based
on all of the measured current passing uniformly through the
heater strip. If a conductor such as a ground wire passes
closer to one side of the meter than the other, some of the
current in the heater strip may be shunted through the stray
capacitance with the nearby wire, resulting in an incorrect
indication.

Inasmuch as the RF ammeter is used to measure the
operating parameters of a broadcast station, its specifications
and application are carefully regulated by the FCC. As of this
writing these are two requirements of the FCC Rules that are
troublesome:

1. The full-scale indication of the meter must not be
greater than three times the normal indication.

2. When not being used, the meter must be stored in a
suitable housing at the base of the tower where it is
normally used.

These two requirements dictate that different meters must be
used to measure the currents in different towers of a
directional-antenna array. If one meter could be carried
around to each of the towers to measure the base currents, it
would probably be easier to keep the ratios between the
currents within limits, even if the calibration of the meter
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were off a little. When separate meters must be used, as is now
required, the calibration of each meter must be as accurate as
possibl